Connect with us

Published

on

Astronomers have assembled the largest-ever compilation of high-precision galaxy distances, called Cosmicflows-4. Galaxies, such as the Milky Way, are the building blocks of the universe, each comprised of up to several hundred billion stars. Galaxies beyond our immediate neighborhood are rushing away, faster if they are more distant, which is a consequence of the expansion of the universe that began at the moment of the Big Bang. Measurements of the distances of galaxies, coupled with information about their velocities away from us, determine the scale of the universe and the time that has elapsed since its birth.

“Since galaxies were identified as separate from the Milky Way a hundred years ago, astronomers have been trying to measure their distances,” said Brent Tully, astronomer at the University of Hawaii at Manoa. “Now by combining our more accurate and abundant tools, we are able to measure distances of galaxies, and the related expansion rate of the universe and the time since the universe was born with a precision of a few per cent.”

From the newly published measurements, the researchers derived the expansion rate of the universe, called the Hubble Constant, or H0. The team’s study gives a value of H0=75 kilometers per second per megaparsec or Mpc (1 megaparsec = 3.26 million light years), with very small statistical uncertainty of about 1.5 percent.

There are a number of ways to measure galaxy distances. Generally, individual researchers focus on an individual method. The Cosmicflows program spearheaded by Tully and Kourkchiincludes their own original material from two methods, and additionally incorporates information from many previous studies. Because Cosmicflows-4 includes distances derived from a variety of independent, distinct distance estimators, intercomparisons should mitigate against a large systematic error.

Astronomers have assembled a framework that shows the universe’s age to be a little more than 13 billion years old, however, a dilemma of great significance has arisen in the details.

Physics of the evolution of the universe based on the standard model of cosmology predicts H0=67.5 km/s/Mpc, with an uncertainty of 1 km/s/Mpc. The difference between the measured and predicted values for the Hubble Constant is 7.5 km/s/Mpc – much more than can be expected given the statistical uncertainties. Either there is a fundamental problem with our understanding of the physics of the cosmos, or there is a hidden systematic error in the measurements of galaxy distances.

Cosmicflows-4 is also being used to study how galaxies move individually, in addition to flowing with the overall expansion of the universe. Deviations from this smooth expansion arise due to the gravitational influences of clumps of matter, on scales ranging from our Earth and Sun up to congregations of galaxies on scales of a half billion light years. The mysterious dark matter is the dominant component on larger scales. With knowledge of the motions of galaxies in response to the mass around them, we can recreate the orbits that galaxies have followed since they were formed, giving us a better understanding of how the universe’s vast, dark-matter-dominated structures have formed over the eons of time.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Russian Kosmos Satellites Release Mysterious Object in Orbit

Published

on

By

Russian Kosmos Satellites Release Mysterious Object in Orbit

A group of Russian satellites launched earlier this year has caught the attention of space watchers around the world. The satellites – Kosmos 2581, 2582, and 2583 – were sent into orbit in early February from the Plesetsk Cosmodrome. They’ve been placed in a near-polar orbit, about 585 kilometres above Earth. So far, Russian officials haven’t confirmed what these satellites are actually meant to do. But what’s really stirred interest is the release of an unknown object from one of them. This new development, spotted in mid-March, has prompted fresh scrutiny from space monitoring teams across the globe.

What We Know So Far

According to tracking data from the United States Space Force and other monitoring groups, the mysterious object appeared on March 18. It was quickly catalogued and, at first, linked to Kosmos 2581. Later on, though, some signals hinted it might be tied to Kosmos 2583 instead. What’s clear is that the object was released while the satellites were still active – and so far, Russia hasn’t said a word about it.

Interestingly, before the object showed up, the satellites were seen carrying out what’s known as “proximity operations” – basically manoeuvring close to other objects in orbit, which is not something routine satellites typically do.

Expert Insight and Possible Explanations

Astrophysicist Jonathan McDowell from the Harvard-Smithsonian Center for Astrophysics spoke to Space.com about the situation. He pointed out that the satellites had been making deliberate close-range movements, which has led many to believe this isn’t just routine activity.

As for the object itself, there are a few possibilities. It could be part of a satellite testing programme or a tool for formation flying. There’s also a chance it’s linked to some kind of military experiment. While a technical malfunction hasn’t been ruled out, experts note that accidents like that usually leave behind several bits of debris – and that doesn’t seem to be the case here.

Putting It Into Context

The “Kosmos” label has been used by Russia for decades, dating back to 1962. It covers a broad range of secretive military and scientific missions. Triplets like this group aren’t unusual either – China and the US have also used similar formations, often for surveillance or intelligence-gathering purposes.
Still, the exact purpose of Kosmos 2581, 2582, 2583 – and now this newly released object – remains a mystery. Until more information is released (if it ever is), analysts will continue to watch closely from the ground.

Continue Reading

Science

NASA’s Parker Solar Probe Completes Second Close Flyby of the Sun

Published

on

By

NASA’s Parker Solar Probe Completes Second Close Flyby of the Sun

NASA’s Parker Solar Probe has made its second close flyby of the sun. The spacecraft travelled at a speed of 692000 kilometres per hour. It moved within 6.1 million kilometres of the sun. This event took place on March 22. A signal confirming its good health was received on March 25. The signal confirmed that all systems on board were working as planned. The probe was designed to study solar winds and collect data from the sun’s outer atmosphere. The mission is being used to help scientists understand solar activity that affects Earth.

More About The Mission

According to NASA’s announcement, the probe’s instruments were activated during the pass. They were used to study the corona. This is the outer layer of the sun’s atmosphere. The spacecraft was operated on its own during the flyby. It had been programmed in advance. Scientists believe this data may help them understand why the corona is hotter than the sun’s surface. The data is also being used to study changes in space weather. This information is considered important for protecting satellites and communication systems on Earth.

Quote from NASA

In a press release issued by NASA, acting Administrator Janet Petro said that the mission has entered a zone no spacecraft has visited before. Petro said this while addressing the media at the agency’s Washington headquarters. She said that the research is expected to change how solar science is studied in the future.

Award given to the team

As per a statement released by the National Aeronautic Association, the mission team was given the 2024 Robert J. Collier Trophy. The team includes experts from NASA and Johns Hopkins Applied Physics Laboratory. Ralph Semmel, Director at Johns Hopkins APL, said that the mission was once believed to be impossible. He shared this in an interview with NASA’s press team. The next close flyby is expected to take place on June 19.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


CMF Phone 2 Rear Panel With Textured Design Teased by Nothing Ahead of Debut



ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

Related Stories

Continue Reading

Science

ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

Published

on

By

ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

The mission of Indian astronaut Group Captain Shubhanshu Shukla to the International Space Station (ISS) will take place in May 2025. This mission will be the greatest research and science-related activity carried out on an Axiom Space voyage onboard the International Space Station to date, emphasizing the mission’s global relevance and collaborative character in advancing microgravity research in low-Earth orbit (LEO). NASA confirmed from its Kennedy Space Center in Florida, United States, that the mission will launch no earlier than May 2025.

Mission Overview and Crew

Shubhanshu Shukla will join an international crew on a commercial spacecraft; he is a skilled aerospace engineer and one of ISRO’s top astronaut prospects. This mission is viewed as a watershed moment in India’s larger journey toward advanced space exploration and human spaceflight.

ISRO’s research studies will focus on investigating the physical and cognitive impact of computer screens in microgravity and studying the growth, metabolism, and genetics of three microalgae strains in microgravity.

Scientific Objectives and Experiments

The ISRO-led study, in collaboration with NASA and ESSA, aims to increase microgravity research aboard the ISS to better our understanding of biological processes in microgravity and develop strategies for long-term space missions.

India’s Expanding Role in Space

Indian astronaut Group Captain Shubhanshu Shukla will be the first Indian astronaut to visit the International Space Station and the first Indian to travel to space in the past 40 years.The commercial mission will be directed by experienced NASA astronaut Peggy Whitson, with Tibor Kapu from Hungary and European Space Agency project astronaut Sławosz Uznański-Wiśniewski from Poland.

Mission Duration and Recovery

Following the launch from Kennedy Space Center, the mission crew will spend 14 days on board the International Space Station, completing several experiments.

According to Axiom Space, the Ax-4 research complement includes over 60 scientific programs and activities from 31 nations, including the United States, India, Poland, Hungary, Saudi Arabia, Brazil, Nigeria, the UAE, and countries throughout Europe.

After achieving their objectives, the spacecraft will return to Earth, with a splashdown scheduled in the Pacific Ocean. NASA and its allies will oversee recovery efforts to ensure the safe return of all crew members.

Continue Reading

Trending