Connect with us

Published

on

NASA’s mission to deflect asteroid is a step towards preparing the world for a potential future asteroid strike like the one which killed the dinosaurs some 66 million years ago, the chances of which are very slim in our lifetime, Indian scientists said.

In a first-of-its-kind mission, the Double Asteroid Redirection Test (DART) spacecraft successfully crashed into an asteroid on Tuesday to test whether space rocks that might threaten Earth in the future could be nudged safely out of the way.

DART – the world’s first planetary defence technology demonstration — targeted the asteroid moonlet Dimorphos, a small body just 160 metres in diameter.

“We are surrounded by several asteroids and comets that orbit our Sun. Very few of them are potentially hazardous to Earth. Hence, It is better to prepare our defenses to avoid such asteroids on a collision course with Earth in the future,” said Chrisphin Karthick, a scientist at the Indian Institute of Astrophysics (IIA), Bengaluru.

Karthick, who is involved in the DART project, noted that the mission “certainly is a step towards” preparing the world for a potential future event like the one which is believed to have led to the extinction of dinosaurs some 66 million years ago.

“This successful DART mission is an example of that. We now know to precisely aim the spacecraft for such a small body. We can also prepare ourselves for the larger body from the post-impact observations of this DART mission,” Karthick told PTI.

Dimorphos orbits a larger 780-metre asteroid called Didymos. Neither asteroid poses a threat to Earth. By comparison, the dinosaur-killing asteroid that hit Earth was about 10 kilometers in diameter.

The DART mission’s one-way trip, confirmed NASA, can successfully navigate a spacecraft to intentionally collide with an asteroid to deflect it, a technique known as kinetic impact.

Goutam Chattopadhyay, a senior scientist at NASA’s Jet Propulsion Laboratory (JPL) in the US also noted that the mission will help to prepare for a future-threatening asteroid.

“DART is an experimental mission to try out a concept of deflecting an asteroid. The idea is, if we can encounter these asteroids whose trajectory is towards us and we do that at a sufficient distance from the Earth, then a minor deflection will be enough to change the path of the asteroid,” he added.

However, scientists noted that most of the asteroids, which are somewhat significant in size and can cause damage on impact with the Earth, have a minuscule chance of hitting the planet.

“However, the probability of that is non-zero and we must always be vigilant. There is always a possibility that a big one might be headed towards us and the question becomes, what would be our approach and how we could mitigate that. That’s why these programs are important,” Chattopadhyay told PTI.

“At least for the next century, there is no such threat from the known asteroids that can cause mass casualties,” said Karthick, adding that this risk assessment is, however, based on the asteroids known to science so far.

Small asteroids are always hitting the Earth all the time but they burn due to the heat generated in the atmosphere. However, for sufficiently large asteroids, that is not the case as the outer core will burn but there will be sufficient mass left to create damage.

The team will now observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos.

Researchers expect the impact to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes; precisely measuring how much the asteroid was deflected is one of the primary purposes of the full-scale test.

“Post impact, the team will observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos,” Karthick said.

“The expected output of the impact is to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes. One of the primary goals is to measure the deflection of the asteroid’s orbit,” he added.

However, Chattopadhyay said whether the mission has been able to deflect the orbit of the asteroid will be known only once all the data has been collected.

“I would emphasise that our calculations and small-scale lab experiments show that it might work well,”. he added NASA has a multi prong approach to monitor Near Earth Asteroids (NEAs). The space agency initiated observations program in 1998. Most discoveries are supported by ground-based telescopic surveys, “We primarily use radars and lidars for this. Mostly they are ground-based systems. However, our existing satellites in space are also used to image and track these objects,” the scientist added.

Lidar is a method for determining distance by targeting an object or a surface with a laser and measuring the time for the reflected light.

“The DART mission is humanity’s first attempt to alter the trajectory of an asteroid by crashing a human made object into it. Today’s successful impact is a big step forward in that direction.

“However, to know the eventual success of this concept, we have to wait a few more years by when any significant change in the trajectory would be clearly apparent,” said Dibyendu Nandi, space scientist at Indian Institutes of Science Education and Research, Kolkata.


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Published

on

By

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Astronomers have discovered the third interstellar comet to pass through our solar system. Named 3I/ATLAS (initially A11pl3Z), it was first spotted July 1 by the ATLAS telescope in Chile and confirmed the same day. Pre-discovery images show it in the sky as far back as mid-June. The object is racing toward the inner system at roughly 150,000 miles per hour on a near-straight trajectory, too fast for the Sun to capture. Estimates suggest its nucleus may be 10–20 km across. Now inside Jupiter’s orbit, 3I/ATLAS will swing closest to the Sun in October and should remain observable into late 2025.

Discovery and Classification

According to NASA, in early July the ATLAS survey telescope in Chile spotted a faint moving object first called A11pl3Z, and the IAU’s Minor Planet Center confirmed the next day that it was an interstellar visitor. The object was officially named 3I/ATLAS and noted as likely the largest interstellar body yet detected. At first it appeared to be an ordinary near-Earth asteroid, but precise orbit measurements showed it speeding at ~150,000 mph – far too fast for the Sun to capture. Astronomers estimate 3I/ATLAS spans roughly 10–20 km across. Signs of cometary activity – a faint coma and short tail – have emerged, earning it the additional comet designation C/2025 N1 (ATLAS).

Studying a Pristine Comet

3I/ATLAS was spotted well before its closest approach, giving astronomers time to prepare detailed observations. It will pass within about 1.4 AU of the Sun in late October. Importantly, researchers can study it while it is still a pristine frozen relic before solar heating alters it. As Pamela Gay notes, discovering the object on its inbound leg leaves “ample time” to analyze its trajectory. Astronomers are now racing to obtain spectra and images – as Chris Lintott warns, the comet will be “baked” by sunlight as it nears perihelion.

Determining its composition and activity is considered “a rare chance” to learn how planets form in other star systems. With new facilities like the Vera C. Rubin Observatory coming online, researchers expect more such visitors in the years ahead. 3I/ATLAS offers a rare chance to study material from another star system.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Science

NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax

Published

on

By

NASA's New Horizons Proves Deep-Space Navigation via Stellar Parallax

NASA’s New Horizons spacecraft carried out an unprecedented deep-space star navigation test while 438 million miles from Earth. Using its long-range camera in April 2020, it captured images of Proxima Centauri and Wolf 359, which appeared slightly shifted in the sky compared to Earth’s view – a striking demonstration of stellar parallax. It was the first-ever demonstration of deep-space stellar navigation. By comparing these images to Earth-based observations and a 3D star chart, scientists calculated New Horizons’ position to within about 4.1 million miles, only about 26 inches across the United States.

Stellar Parallax Test

According to the paper describing the results, accepted for publication in The Astronomical Journal, New Horizons’ camera imaged Proxima Centauri (4.2 light-years away) and Wolf 359 (7.86 light-years) on April 23, 2020. From the spacecraft’s distant vantage point, the two stars appear in different positions than seen from Earth – the essence of stellar parallax. By comparing those images with Earth-based data and a three-dimensional map of nearby stars, the team worked out the probe’s location to within about 4.1 million miles.

As lead author Tod Lauer explained, “Taking simultaneous Earth/Spacecraft images we hoped would make the concept of stellar parallaxes instantly and vividly clear”. He added, “It’s one thing to know something, but another to say ‘Hey, look! This really works!’”.

New Horizons and Future Missions

New Horizons, the fifth spacecraft to leave Earth and reach interstellar space, flew past Pluto and its moon Charon in 2015, sending home the first close-up images of those distant icy worlds. Now on an extended mission, the probe is studying the heliosphere.

New Horizons’ principal investigator Alan Stern called the parallax test “a pioneering interstellar navigation demonstration” that shows a spacecraft can use onboard cameras “to find its way among the stars”, in a statement. He also noted it “could be highly useful for future deep space missions in the far reaches of the Solar System and in interstellar space”

Continue Reading

Science

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Published

on

By

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Marine animals like fish and seals have long inspired ocean engineers due to their fluid, energy-efficient movements. Now, researchers are turning to these sea animals to create a new class of underwater gliders that requires very little energy, according to a team led by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison. They used artificial intelligence to design forms that slide through the water with less resistance, making long-term ocean exploration more efficient. These gliders, fabricated via 3D printing, promise better data collection on currents, salt levels, and climate impacts.

AI-Powered 3D Designs Create Energy-Efficient Underwater Gliders Inspired by Marine Life Forms

As per a study published on the arXiv preprint server, the team used machine learning to create and simulate numerous novel 3D glider shapes. By comparing traditional models—like submarines and sharks—with digitally altered versions, their algorithm learnt how different designs behaved at various “angles-of-attack.” A neural network then evaluated the lift-to-drag ratio of each shape, identifying those most likely to glide efficiently through water. These shapes were then fabricated using lightweight materials that minimised energy use.

In tests, two AI-generated prototypes—one shaped like a two-winged plane and the other like a four-finned flatfish—were built and tested both in wind tunnels and underwater. Key hardware was integrated with the gliders, including buoyancy control by a pump and a mass shifter to move the angle during displacements. The new gliders, with better shapes and lift-to-drag ratios, could travel farther on less power than traditional torpedo-shaped types.

The team added that what they are doing not only makes new types of designs possible but also reduces design times and cuts the cost since it doesn’t require physical prototyping. “This high degree of shape diversity hasn’t been investigated before,” Peter Yichen Chen, an MIT postdoc and co-lead author on the project, mentioned. He also noted that their AI pipeline allows testing forms that would be “very taxing” for humans to manually design.

The future plans are to produce slimmer and more manoeuvrable gliders and to improve the AI system with more configurable options. Intelligent bioinspired vehicles like these, the researchers say, will be essential in studying dynamic ocean environments that are changing quickly with the intensifying demands of industrial activity, ultimately offering more flexible and efficient ways for us to explore Earth’s last frontier.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Observations Give Forgotten Globular Cluster Its Moment to Shine



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Trending