Connect with us

Published

on

NASA’s DART spacecraft successfully slammed into a distant asteroid at hypersonic speed on Monday in the world’s first test of a planetary defense system, designed to prevent a potential doomsday meteorite collision with Earth.

Humanity’s first attempt to alter the motion of an asteroid or any celestial body played out in a NASA webcast from the mission operations center outside Washington, DC, 10 months after DART was launched.

The livestream showed images taken by DART’s camera as the cube-shaped “impactor” vehicle, no bigger than a vending machine with two rectangular solar arrays, streaked into the asteroid Dimorphos, about the size of a football stadium, at 7:14 pm EDT (23:14 GMT) some 6.8 million miles (11 million km) from Earth.

The $330 million (roughly Rs. 2,683 crore) mission, some seven years in development, was devised to determine if a spacecraft is capable of changing the trajectory of an asteroid through sheer kinetic force, nudging it off course just enough to keep Earth out of harm’s way.

Whether the experiment succeeded beyond accomplishing its intended impact will not be known until further ground-based telescope observations of the asteroid next month. But NASA officials hailed the immediate outcome of Monday’s test, saying the spacecraft achieved its purpose.

“NASA works for the benefit of humanity, so for us it’s the ultimate fulfillment of our mission to do something like this – a technology demonstration that, who knows, some day could save our home,” NASA Deputy Administrator Pam Melroy, a retired astronaut, said minutes after the impact.

DART, launched by a SpaceX rocket in November 2021, made most of its voyage under the guidance of NASA’s flight directors, with control handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s bullseye impact was monitored in near real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

Cheers erupted from the control room as second-by-second images of the target asteroid, captured by DART’s onboard camera, grew larger and ultimately filled the TV screen of NASA’s live webcast just before the signal was lost, confirming the spacecraft had crashed into Dimorphos.

DART’s celestial target was an oblong asteroid “moonlet” about 560 feet (170 meters) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test could not create a new hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and present a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts. A Dimorphos-sized asteroid, while not capable of posing a planet-wide threat, could level a major city with a direct hit.

Also, the two asteroids’ relative proximity to Earth and dual configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic suicide mission

The mission represented a rare instance in which a NASA spacecraft had to crash to succeed. DART flew directly into Dimorphos at 15,000 miles per hour (24,000 kph), creating the force scientists hope will be enough to shift its orbital track closer to the parent asteroid.

APL engineers said the spacecraft was presumably smashed to bits and left a small impact crater in the boulder-strewn surface of the asteroid.

The DART team said it expects to shorten the orbital path of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered.

A nudge to an asteroid millions of miles away years in advance could be sufficient to safely reroute it.

Earlier calculations of the starting location and orbital period of Dimorphos were made during a six-day observation period in July and will be compared with post-impact measurements made in October to determine whether the asteroid budged and by how much.

Monday’s test also was observed by a camera mounted on a briefcase-sized mini-spacecraft released from DART days in advance, as well as by ground-based observatories and the Hubble and Webb space telescopes, but images from those were not immediately available.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

© Thomson Reuters 2022


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Mice now use VR headsets to help scientists study brain activity and behaviour

Published

on

By

Mice now use VR headsets to help scientists study brain activity and behaviour

Innovative VR headsets have been designed for mice, enabling scientists to study brain activity in highly immersive environments. Using these headsets, researchers can observe neural responses during specific behaviours, potentially unlocking new understanding of human neurological disorders. Crafted from readily available components such as smartwatch screens and miniature lenses, these devices are seen as a breakthrough in neuroscience research, offering precise insights into how mammals interact with their surroundings.

Development and Functionality of the Headsets

According to a study published in Nature Methods, the VR headsets—known as “MouseGoggles”—are paired with a spherical treadmill that keeps the mice stationary while simulating movement. These goggles attach to the mice’s heads, displaying sharp, high-contrast visuals that mimic real-world experiences. Dr. Matthew Isaacson, a postdoctoral researcher at Cornell University, stated in a press release that prior methods using projector screens failed to engage mice effectively, but the new goggles produced significant behavioural responses, such as startled reactions to simulated predators.

Verification of the Technology

To confirm the efficacy of the MouseGoggles, researchers examined activity in two critical brain regions. The primary visual cortex revealed that the mice could perceive the projected images clearly, while the hippocampus indicated accurate mapping of virtual environments. These findings underline the potential for the technology to deepen understanding of how mammals navigate and interact with their surroundings.

Future Applications and Advancements

Dr. Chris Schaffer, Professor of Biomedical Engineering at Cornell, noted to phys.org that these headsets could transform neuroscience by enabling the study of naturalistic behaviours. Plans are underway to create lightweight versions for larger rodents like rats and to incorporate sensory elements such as smell and taste into the VR experience. This expanded capability could provide more comprehensive insights into complex decision-making processes and sensory integration.
The research team believes this technology could significantly enhance studies into conditions like Alzheimer’s, offering critical understanding of spatial navigation and memory deficits.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Stalker 2, Spider-Man 2, Starfield: Best Holiday Season Deals on Steam, PlayStation and Xbox Games



Apple’s Foldable iPhone Tipped to Launch in September 2026 With Cutting-Edge Technology

Continue Reading

Science

How Human Activity Fuels Pandemics: Climate Change and Biodiversity at the Core

Published

on

By

How Human Activity Fuels Pandemics: Climate Change and Biodiversity at the Core

The rise in pandemics has been attributed to disruptions caused by human activities to the planet’s ecosystems. Infectious diseases, which have historically resulted in significant loss of life, are appearing more frequently. This resurgence has raised concerns among experts about the factors driving this trend. Modern advancements in science, including vaccinations and antibiotics, initially seemed to have controlled these outbreaks. Yet, the occurrence of diseases such as HIV/AIDS, SARS, and COVID-19 highlights the ongoing challenges.

Ecosystem Disruption and Its Role

According to a study published by researchers from the University of Adelaide, the disruption of ecosystems is central to the emergence of pandemics. Healthy ecosystems regulate diseases by maintaining natural balances, including predator-prey dynamics and vegetation growth. However, activities such as deforestation, climate change, and biodiversity loss have altered these balances, enabling pathogens to spread more easily. For instance, changes in climate have allowed disease-carrying mosquitoes to expand their range into previously temperate regions.

The Impact of Biodiversity Loss

Reports have indicated that biodiversity loss has created opportunities for pathogens to move from wildlife to humans. The case of vampire bats in South America is often cited, where deforestation and agricultural expansion provided new feeding grounds, leading to the spread of rabies. Similarly, the HIV virus emerged through the hunting of apes for food, eventually spreading globally. These examples underscore the link between human activity and the rise of zoonotic diseases.

The Importance of Planetary Health

Experts advocate for a “planetary health” approach, emphasising the interdependence of human health and the natural environment. This strategy aims to address fundamental drivers like climate change while also tackling immediate causes such as wildlife-human interactions. Educational institutions are increasingly integrating planetary health into their curricula to equip future leaders with tools to mitigate pandemic risks effectively.

It is widely believed that without addressing the root causes, the likelihood of future pandemics remains significant. Efforts to balance human development with ecological preservation have been suggested as key to safeguarding global health.

Continue Reading

Science

Parker Solar Probe to make record-breaking Sun flyby on Christmas Eve

Published

on

By

Parker Solar Probe to make record-breaking Sun flyby on Christmas Eve

The Parker Solar Probe, a mission by NASA, is set to make its closest approach to the Sun on Christmas Eve, December 24, 2024. This milestone flyby is expected to occur at precisely 6:53 a.m. EST, as reported by multiple sources. The spacecraft will reach an unprecedented proximity of 6.1 million kilometers from the Sun’s surface, marking the 22nd close encounter of its mission. This approach represents a record-breaking moment in space exploration, achieved through seven Venus flybys that incrementally brought the probe closer to the Sun.

Details of the Flyby

According to mission updates from NASA and the Johns Hopkins Applied Physics Laboratory (JHUAPL), the Parker Solar Probe will travel at a staggering speed of 692,000 kilometers per hour during its journey through the Sun’s outer atmosphere, or corona. This high-speed encounter aims to shed light on the corona’s extreme temperatures and its role in solar wind generation. The probe’s heat shield, built to endure temperatures up to 1,377 degrees Celsius, will ensure the spacecraft remains operational as it navigates the intense environment.

Updates and Tracking

While the event itself will not be broadcast live, updates will be provided through NASA’s official channels and the Parker Solar Probe mission blog. A status check from the spacecraft is expected on December 27, followed by the first telemetry data on January 1, 2025. The initial scientific findings, including data on solar activity, are anticipated by late January.

What Comes Next

This flyby is part of the probe’s seven-year mission, concluding in 2025 after a total of 24 solar encounters. Subsequent flybys in March and June 2025 will continue to gather valuable data, with decisions about the probe’s orbit to be made thereafter, as per the mission team’s updates.

Continue Reading

Trending