Connect with us

Published

on

NASA’s Double Asteroid Redirection Test (DART) spacecraft is designed to be a one hit wonder. It will end its days by crashing into an asteroid at 24,000 kilometres per hour on September 26. Launched from Earth in November 2021, DART is about the size of a bus and was created to test and prove our ability to defend Earth from a dangerous asteroid.

Landing a direct hit on a target from 11 million kilometres away isn’t easy. But while this sounds far, the asteroid was actually selected by NASA because it is relatively close to Earth. This will give engineers the opportunity to test the spacecraft’s ability to operate itself in the final stages before the impact, as it crashes autonomously.

The target asteroid is called Dimorphos, a body 163 metres in diameter that’s orbiting a 780 metre-wide asteroid called Didymos. This “binary asteroid system” was chosen because Dimorphos is in orbit around Didymos, which makes it easier to measure the result of the impact due to the resulting change in its orbit. However, the Dimorphos system does not currently pose any risk to the Earth.

Regardless, NASA is attempting nothing less than a full scale planetary defence experiment to change an asteroid’s path. The technique being used is called “kinetic impact”, which alters the orbit of the asteroid by crashing into it. That’s essentially what is known as a safety shot in snooker, but played on a planetary level between the spacecraft (as the cue ball) and the asteroid.

A tiny deflection could be sufficient to prove that this technique can actually change the path of an asteroid on a collision path with the Earth.

But the DART spacecraft is going to be completely blown apart by the collision because it will have an impact equivalent to about three tonnes of TNT. In comparison, the atomic bomb dropped on Hiroshima was equal to 15,000 tonnes of TNT.

So, with this level destruction and the distance involved, how will we be able to see the crash? Luckily, the DART spacecraft is not travelling alone on its quest, it is carrying LICIACube, a shoebox-size mini spacecraft, known as a cubesat, developed by the Italian Space Agency and aerospace engineering company Argotec. This little companion has recently separated from the DART spacecraft and is now travelling on its own to witness the impact at a safe distance of 55km.

Never before has a cubesat operated around asteroids so this provides new potential ways of exploring space in the future. The impact will also be observed from Earth using telescopes. Combined, these methods will enable scientists to confirm whether the operation has been successful.

It might, however, take weeks for LICIACube to send all images back to Earth. This period will be utterly nerve wracking – waiting for good news from a spacecraft is always an emotional time for an engineer.

What happens next? An investigation team will look at the aftermath of the crash. These scientists will aim to measure the changes in Dimorphos’ motion around Didymos by observing its orbital period. This is the time during which Dimorphos passes in front and behind Didymos, which will happen every 12 hours.

Ground telescopes will aim to capture images of the Dimorphos’ eclipse as this happens. To cause a significant enough deflection, DART must create at least a 73-second orbital period change after impact – visible as changes in the frequencies of the eclipses.

These measurements will ultimately determine how effective “kinetic impact” technology is in deflecting a potentially hazardous asteroid – we simply don’t know yet.

This is because we actually know very little of the asteroids’ composition. The great uncertainty around how strong Dimorphosis is has made designing a bullet spacecraft a truly enormous engineering challenge. Based on ground observation, the Didymos system is suspected to be a rubble-pile made up of lots of different rocks, but its internal structure is unknown.

There are also great uncertainties about the outcome of the impact. Material ejected afterwards will contribute to the effects of the crash, providing an additional force. We don’t know whether a crater will be formed by the impact or if the asteroid itself will suffer major deformation, meaning we can’t be sure how much force the collision will unleash.

Future missions Our exploration of the asteroid system does not end with DART. The European Space Agency is set to launch the Hera mission in 2024, arriving at Didymos in early 2027 to take a close look at the remaining impact effects.

By observing the deformations caused by the DART impact on Dimorphos, the Hera spacecraft will gain a better understanding of its composition and formation. Knowledge of the internal properties of objects such as Didymos and Dimorphos will also help us better understand the danger they might pose to Earth in the event of an impact.

Ultimately, the lessons from this mission will help verify the mechanics of a high-velocity impact. While laboratory experiments and computer models can already help validate scientists’ impact predictions, full-scale experiments in space such as DART are the closest we will get to the whole picture. Finding out as much as we can about asteroids will help us understand what force we need to hit them with to deflect them.

The DART mission has led to worldwide cooperation among scientists hoping to address the global issue of planetary defence and, together with my colleagues on the DART investigation team, we aim to analyse the impact effects. My own focus will be on studying the motion of the material that is ejected from the impact.

The spacecraft impact is scheduled for September 26 at 19:14 Eastern Daylight Time (00:14 British Summer Time on September 27). You can follow the impact on NASA TV.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

50,000-year-old baby mammoth remains found nearly intact in Siberia

Published

on

By

50,000-year-old baby mammoth remains found nearly intact in Siberia

The well-preserved remains of a baby mammoth, estimated to be 50,000 years old, were recently revealed by researchers in Russia. Found in the thawing permafrost of the Yakutia region, the specimen has been named “Yana,” referencing the river near which it was uncovered during the summer. According to North-Eastern Federal University, where the remains are displayed, Yana is among the most intact mammoth carcasses ever discovered. Reports confirm that this marks one of only seven complete mammoth remains unearthed globally.

Discovery at Batagaika Crater

Yana’s remains were located in the Batagaika crater, an expansive depression in the Verkhoyansky district that continues to expand due to climate change. The mammoth, weighing over 240 pounds and measuring approximately four feet in length, is believed to have died at around one-year-old. Maxim Cherpasov, Head of the Lazarev Mammoth Museum Laboratory in Yakutsk, stated to Reuters that the survival of the head and trunk in such pristine condition is highly unusual. Typically, these parts are consumed by modern predators or scavengers soon after exposure, but Yana’s head remained largely intact.

A Historic Find in Siberian Permafrost

In recent years, Siberia’s permafrost has yielded numerous prehistoric animal remains due to rising temperatures. The Batagaika research station, near where Yana was found, has also provided remains of a horse, a bison, and a lemming. Anatoly Nikolayev, Rector of North-Eastern Federal University, shared in official reports that the preservation of Yana is extraordinary.

This discovery adds to the growing list of remarkable finds in Yakutia, including the remains of a 32,000-year-old sabre-toothed cat cub and a 44,000-year-old wolf carcass uncovered earlier this year. Researchers are continuing tests to gather more insights into Yana’s life and environment, as per Reuters.

Continue Reading

Science

NASA delays Artemis moon missions; new launch dates set for 2026 and 2027

Published

on

By

NASA delays Artemis moon missions; new launch dates set for 2026 and 2027

NASA has confirmed delays to its Artemis program, postponing the first two crewed lunar missions. Artemis 2, which will send astronauts around the moon, has been rescheduled from September 2025 to April 2026. Artemis 3, aiming to return humans to the lunar surface for the first time in over 50 years, has shifted from late 2026 to mid-2027. The postponements, announced on December 5, are attributed to technical challenges, including issues with the Orion spacecraft’s heat shield.

Heat Shield Complications and Safety Measures

A report from Space.com indicate that the delays stem from findings during the uncrewed Artemis 1 mission in 2022. The Orion spacecraft’s heat shield experienced uneven shedding due to internal pressure caused by trapped gases during a planned skip reentry. NASA Deputy Administrator Pam Melroy, during a press conference, stated that adjustments to the spacecraft’s reentry trajectory would ensure safety.

Impact on Contractors and International Competition

Sources suggest that disruptions to contractor momentum and expertise are potential risks from the schedule changes. Concerns have also been raised regarding NASA’s competitive edge in space exploration. China, which has announced plans to send astronauts to the moon before 2030, could narrow the gap in this symbolic race. Beijing’s advancements, including new rockets and lunar landers, are seen as direct competition.

Potential Shifts in U.S. Space Policy

Uncertainty surrounds the Artemis program’s future under the incoming U.S. administration. Reports speculate that President-elect Donald Trump, who has criticised expensive government projects, may reassess NASA’s reliance on the Space Launch System (SLS). With cost overruns and delays plaguing the SLS, alternatives such as SpaceX’s Starship could gain prominence. Starship, integral to Artemis’ lunar architecture, is considered a more cost-effective and reusable option.

Geopolitical Ramifications and the Road Ahead

Changes to the Artemis program could impact NASA’s partnerships with agencies such as the European Space Agency, as well as its broader moon-to-Mars strategy. Officials have reiterated the importance of Artemis in advancing human exploration, though uncertainty looms over its trajectory.

Continue Reading

Science

Underwater Neutrino Telescopes in the Mediterranean for Cosmic Research

Published

on

By

Underwater Neutrino Telescopes in the Mediterranean for Cosmic Research

Efforts are underway in the Mediterranean Sea to install the underwater neutrino telescope known as KM3NeT, as reported by various sources. The telescopes are designed to detect high-energy neutrinos, subatomic particles emitted from unidentified cosmic sources. Unlike traditional telescopes, these devices rely on capturing light generated when neutrinos collide with seawater. This massive project spans a cubic kilometre of the Mediterranean and involves deploying hundreds of detector strands. The work aims to unveil new insights about the universe.

Unique Design and Deployment Challenges

According to experts, KM3NeT comprises two distinct telescopes featuring glass spheres, each packed with photomultiplier tubes. Simone Biagi, a physicist at Italy’s National Institute for Nuclear Physics, shared with Science News that the telescopes are situated several kilometres below the surface. Deployment involves suspending cables of sensors, resembling strands of pearls, each up to 700 metres in length. These are lowered to the seabed and gradually released to unfurl in the water. A remotely operated submersible is used to make precise connections and inspect the setup.

Scientific Goals of the Project

Sources indicate that one telescope, positioned off Sicily’s coast, is designed to observe high-energy neutrinos originating from space. The second, off the coast of France, is dedicated to studying atmospheric neutrinos and their oscillations. These oscillations provide vital data about how neutrinos shift between different forms, contributing to advancements in particle physics.

Operational Challenges at Sea

Physicists working on this project face significant challenges, including harsh sea conditions and tight schedules. According to reports, deployment campaigns occur annually, each lasting about a month. During this period, researchers work under immense pressure to ensure all equipment functions perfectly. Any errors must be corrected immediately, as adjustments after deployment are impossible.

Experts suggest that the partially completed KM3NeT telescopes are already yielding valuable scientific data, providing insights into quantum gravity effects and neutrino behaviours.

Continue Reading

Trending