Connect with us

Published

on

India’s Mars Orbiter craft has run out of propellant and its battery drained beyond the safe limit, fuelling speculation that the country’s maiden interplanetary mission ‘Mangalyaan’ may have finally completed its long innings.

The Rs. 450 crore Mars Orbiter Mission was launched onboard PSLV-C25 on November 5, 2013, and the MOM spacecraft was successfully inserted into Martian orbit on September 24, 2014 in its first attempt.

“Right now, there is no fuel left. The satellite battery has drained,” sources in the Indian Space Research Organisation (ISRO) told PTI. “The link has been lost”.

There was, however, no official word from the country’s national space agency, headquartered here.

With fuel on board, ISRO had been performing orbital manoeuvres on MOM spacecraft to take it to a new orbit to avoid an impending eclipse in the past.

“But recently there were back-to-back eclipses including one that lasted seven-and-half hours,” officials said on condition of anonymity, noting that all the propellant on board the ageing satellite had been consumed.

“As the satellite battery is designed to handle eclipse duration of only about one hour and 40 minutes, a longer eclipse would drain the battery beyond the safe limit,” another official said.

ISRO officials noted that the Mars orbiter craft functioned for almost eight years, well beyond its designed mission life of six months.

“It has done its job and yielded significant scientific results,” they said. The objectives of the mission were primarily technological and included design, realisation and launch of a Mars Orbiter spacecraft capable of operating with sufficient autonomy during the journey phase; Mars orbit insertion/ capture and in-orbit phase around Mars.

The MOM — a technology demonstration venture — carried five scientific payloads (total 15 kg) collecting data on surface geology, morphology, atmospheric processes, surface temperature and atmospheric escape process.

The five instruments are: Mars Color Camera (MCC), Thermal Infrared Imaging Spectrometer (TIS), Methane Sensor for Mars (MSM), Mars Exospheric Neutral Composition Analyser (MENCA) and Lyman Alpha Photometer (LAP).

“MOM is credited with many laurels like cost-effectiveness, short period of realisation, economical mass-budget, and miniaturisation of five heterogeneous science payloads”, ISRO officials pointed out.

Highly elliptical orbit geometry of MOM enabled MCC to take snap shots of ‘Full disc’ of Mars at its farthest point and finer details from closest point.

The MCC has produced more than 1000 images and published a Mars Atlas.

Meanwhile, plans on a follow-on Mangalyaan mission to the red planet, however, are yet to be firmed up.

ISRO came out with an ‘Announcement of Opportunity’ (AO) for future Mars Orbiter Mission (MOM-2) in 2016 but officials acknowledged that it’s still on the drawing board, with the coming ‘Gaganyaan’, Chandrayaan-3 and Aditya – L1 projects being in the space agency’s current priority list.

The AO had said, “It is now planned to have the next orbiter mission around Mars for a future launch opportunity. Proposals are solicited from interested scientists within India for experiments onboard an orbiter mission around Mars (MOM-2), to address relevant scientific problems and topics.” “Not in the approved list as of now”, a senior ISRO official told PTI on being asked about an update on the MOM-2.

“We need to formulate the project proposals and payloads based on the wider consultation with the research community,” the official said. “It’s still on the drawing board. But needs some more details and international collaboration for finalising the mission.”


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Chandrayaan-4 Mission Gets Approval, Will Return to Earth This Time

Published

on

By

Chandrayaan-4 Mission Gets Approval, Will Return to Earth This Time

Chandrayaan-4 mission has received approval from the Union Cabinet, led by Prime Minister Narendra Modi, on Wednesday. This marks another significant milestone in India’s lunar exploration efforts. Unlike previous missions, Chandrayaan-4 will not only aim for a successful landing on the Moon but will also focus on returning to Earth. This mission will demonstrate critical technologies that will allow for lunar samples to be collected, brought back to Earth, and studied. It represents an essential leap toward India’s long-term goal of landing on the Moon with humans by 2040.

Chandrayaan-4 to Develop Return Technologies

Chandrayaan-4 follows the successful Chandrayaan-3 mission and aims to further advance India’s capabilities in space. The mission will focus on developing technologies essential for docking, undocking, landing, and safe return from the Moon. Collecting lunar samples will also be a key feature, as India moves closer to a full-scale manned mission in the coming decades. The government’s vision includes an Indian Space Station by 2035, followed by human landings on the Moon by 2040.

Mission Details and Industry Involvement

The mission will be completed within 36 months of approval, with ISRO leading the development and launch. It will involve participation from both industry and academia. A budget of ₹2104.06 crore has been allocated for spacecraft development, launch vehicle missions, and deep space support.

This includes costs for special tests and design validation. High employment potential is expected in associated sectors due to this mission.

Aiming for Self-Sufficiency in Space Technologies

Chandrayaan-4 is set to make India self-reliant in crucial space technologies, helping the nation prepare for future manned missions and lunar explorations. The mission will also involve science meets and workshops to include Indian academia and ensure significant contributions to the analysis of lunar samples.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Moto G85 5G Could Soon Be Available in Two New Colour Options in India



Lumma Stealer Malware Being Spread to Windows Devices via Fake Human Verification Pages, CloudSEK Says

Continue Reading

Science

Ancient Barracks Unearthed With Egyptian Pharaoh Inscribed Sword

Published

on

By

Ancient Barracks Unearthed With Egyptian Pharaoh Inscribed Sword

A recent excavation in Egypt has uncovered a 3,200-year-old military barracks containing a treasure trove of ancient artefacts, including a sword inscribed with the name of Pharaoh Ramesses II. This discovery sheds light on Egypt’s military operations during Ramesses II’s reign, a time when threats from the Libyans were growing. The barracks also contained storerooms for grain, ovens for baking, and pottery filled with animal bones, including fish. Additionally, archaeologists found cow burials at the site, leading experts to suggest these animals were used for food.

Discovery of Bronze Sword and Limestone Blocks

Among the most significant finds was a bronze sword inscribed with Ramesses II’s name, discovered in a small room near what might have been a defensive position. According to Ahmed El Kharadly, an archaeologist with the Egyptian Ministry of Tourism and Antiquities, this suggests the sword was intended for combat and not merely ceremonial use.

The excavation also uncovered two limestone blocks with hieroglyphic inscriptions, one bearing the name of Ramesses II and the other referring to an official named Bay.

Strategic Military Location

The barracks were located along a military road in the northwest Nile Delta, a strategic point where Egyptian forces could defend against potential invasions from the western desert and the Mediterranean. The location of this site aligns with historical accounts indicating rising tensions between Egypt and Libyan groups.

Professor Anthony Spalinger from the University of Auckland noted that the garrison likely played a key role in controlling access to Egypt during this period.

Significance of the Discovery

Peter Brand, a history professor at the University of Memphis, highlighted the importance of the find for understanding the military strategy of Ramesses II. This well-preserved barracks offers rare insights into the logistics of Egypt’s armed forces at the time.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung One UI 7 Update Reportedly Being Tested by Subsidiaries Ahead of Beta Release



NASA James Webb Space Telescope Challenges Assumptions Made by Standard Cosmological Model

Related Stories

Continue Reading

Science

A Wobble from Mars? It Could Be Dark Matter, Study Reveals

Published

on

By

A Wobble from Mars? It Could Be Dark Matter, Study Reveals

MIT physicists have put forward a theory that the wobble in Mars’ orbit could be caused by primordial black holes, which may constitute dark matter. According to the research, these tiny black holes formed after the Big Bang and could be passing through our solar system, affecting the orbit of planets like Mars. David Kaiser, a professor of physics at MIT, suggests that the technology we have today could detect this slight shift in Mars’ orbit, which would be a significant breakthrough in understanding dark matter.

The Role of Primordial Black Holes

The study published in the journal Physical Review D suggests that dark matter could be made up of these primordial black holes, which are different from those formed from collapsed stars. These microscopic black holes may exert enough gravitational force to impact planetary orbits.

MIT’s team, including David Kaiser and Sarah Geller, used simulations to predict that these black holes pass through the solar system every decade or so. Their calculations show that even a black hole the size of an asteroid could influence Mars’ orbit.

Detecting the Wobble

Mars is an ideal candidate for this study because of its precise telemetry data. Instruments currently track its position with an accuracy of about 10 centimetres. A passing primordial black hole would cause Mars to deviate slightly from its regular orbit. Sarah Geller, a postdoctoral researcher at the University of California, Santa Cruz, told Phys.org that while Earth and the Moon might also be affected, the data for Mars is clearer, making it easier to detect any potential anomalies.

What This Could Mean for Dark Matter Research

If such a wobble is detected, it could confirm the presence of primordial black holes and offer new insights into dark matter. The research highlights the need for precise observations and collaboration with experts in solar system dynamics to explore this phenomenon further.

Continue Reading

Trending