Connect with us

Published

on

NASA’s historic uncrewed mission to the Moon is facing fresh difficulties. After technical problems derailed two launch attempts several weeks ago, a new liftoff of the Artemis 1 mission scheduled for Tuesday is now threatened by a storm gathering in the Caribbean.

The storm, which has not yet been assigned a name, is currently located south of the Dominican Republic.

But it is expected to grow into a hurricane in the coming days and could move north to Florida, home to the Kennedy Space Center, from which the rocket is set to launch.

“Our plan A is to stay to course and to get the launch off on September 27,” Mike Bolger, NASA’s exploration ground systems manager, told reporters on Friday. “But we realised we also need to be really paying attention and thinking about a plan B.”

That would entail wheeling the giant Space Launch System rocket back to the Vehicle Assembly Building, known as VAB.

“If we were to go down to Plan B we need a couple days to pivot from our current tanking test or launch configuration to execute rollback and get back into the protection of the VAB,” Bolger said, adding that a decision should be made by early afternoon on Saturday.

On the launch pad the orange and white SLS rocket can withstand wind gusts of up to 137 kilometres per hour. But if it has to be sheltered, the current launch window, which runs until October 4, will be missed.

The next launch window will run from October 17 to 31, with one possibility of take-off per day, except from October 24-26 and 28.

A successful Artemis 1 mission will come as a huge relief to the US space agency, after years of delays and cost overruns. But another setback would be a blow to NASA, after two previous launch attempts were scrapped when the rocket experienced technical glitches including a fuel leak.

The launch dates depend on NASA receiving a special waiver to avoid having to retest batteries on an emergency flight system that is used to destroy the rocket if it strays from its designated range to a populated area.

On Tuesday the launch window will open at 11:37 local time and will last 70 minutes.

If the rocket takes off that day, the mission will last 39 days before it lands in the Pacific Ocean on November 5.

The Artemis 1 space mission hopes to test the SLS as well as the unmanned Orion capsule that sits atop, in preparation for future Moon-bound journeys with humans aboard.

Mannequins equipped with sensors are standing in for astronauts on the mission and will record acceleration, vibration and radiation levels.

The next mission, Artemis 2, will take astronauts into orbit around the Moon without landing on its surface.

The crew of Artemis 3 is to land on the Moon in 2025 at the earliest.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Indian Ocean Anomaly Challenges Ekman’s Ocean Current Theory

Published

on

By

Indian Ocean Anomaly Challenges Ekman’s Ocean Current Theory

A study published in Science Advances has identified a significant anomaly to Vagn Walfrid Ekman’s widely-accepted theory on wind-driven ocean currents. Conducted by a team of researchers from NOAA, the Indian National Center for Ocean Information Services and the University of Zagreb, the study focused on the Bay of Bengal in the Indian Ocean. Data spanning several years from a buoy stationed off India’s eastern coast was examined, revealing that ocean currents in this region deflect leftward, contradicting the theory’s predictions for the Northern Hemisphere.

Ekman’s Theory and Its Longstanding Influence

The Ekman theory, developed in 1905 by Swedish oceanographer Vagn Walfrid Ekman, asserts that surface ocean currents are deflected 45 degrees to the right of wind direction in the Northern Hemisphere due to the Coriolis force. Successive layers beneath the surface exhibit similar patterns, forming the Ekman spiral. This mechanism, though robust, assumes idealised conditions, including uniform ocean depth and density. Variations such as those observed in the Bay of Bengal highlight its limitations.

Findings from the Bay of Bengal

As per the study, according to data collected over several years, currents in the Bay of Bengal were found to veer leftward despite prevailing winds, defying Ekman’s predictions. This anomaly underscores the need to reassess assumptions about global oceanic patterns. The researchers suggested that local factors, including unique regional wind patterns and oceanic dynamics, could play a significant role.

Implications for Climate Models

It was noted in a statement by the researchers that the findings could influence future climate modelling efforts. If exceptions to Ekman’s theory exist in the Bay of Bengal, others might also occur globally, underscoring the need for more detailed oceanographic studies. Discussions have also highlighted the potential deployment of a NASA satellite system to monitor wind and surface currents comprehensively.

This study has brought attention to gaps in understanding wind-driven currents, stressing the importance of revisiting established models as global warming continues to impact ocean behaviour.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


World Labs Unveils AI System That Can Generate 3D Interactive Worlds Using an Image



Samsung Galaxy Z Fold 7, Galaxy Z Flip 7 to Debut With Larger Displays: Report

Related Stories

Continue Reading

Science

ISRO’s PSLV-C59 to Launch ESA’s Proba-3 Mission for Sun Corona Study

Published

on

By

ISRO's PSLV-C59 to Launch ESA's Proba-3 Mission for Sun Corona Study

The Indian Space Research Organisation (ISRO) has scheduled the launch of the PSLV-C59 rocket carrying the Proba-3 spacecraft for December 4, 2024, at 4:08 PM IST, as per reports. The mission, a dedicated commercial venture of NewSpace India Limited (NSIL), will take off from the First Launch Pad at the Satish Dhawan Space Centre, Sriharikota. According to reports, this will mark the 61st mission of the Polar Satellite Launch Vehicle (PSLV) and the 21st use of its XL configuration.

Mission Overview

As per sources, Proba-3, a project developed by the European Space Agency (ESA), is an In-Orbit Demonstration (IOD) mission aimed at showcasing precision formation flying. The spacecraft consists of two components: the Coronagraph Spacecraft (CSC) and the Occulter Spacecraft (OSC). These satellites, launched in a stacked arrangement, will operate in tandem, maintaining a precise distance of 150 meters. The innovative configuration will enable the creation of artificial solar eclipses, allowing extended observation of the Sun’s corona.

Scientific Objectives

Reports indicate that the mission’s primary objective is to explore the Sun’s corona, the outermost layer of its atmosphere, to enhance understanding of solar dynamics and space weather. Instruments aboard the spacecraft have been designed to block the Sun’s intense light, facilitating detailed study of solar phenomena that are otherwise difficult to observe. Proba-3’s ability to continuously monitor the corona for up to six hours is expected to yield valuable scientific data.

Collaboration and Technology

The mission highlights significant collaboration between ISRO and ESA. Reportedly, the PSLV-XL rocket, equipped with additional strap-on boosters, will carry a payload weighing approximately 550 kg. The precision formation flying technology demonstrated by Proba-3 is expected to pave the way for advanced techniques in space exploration. The launch preparations at the Satish Dhawan Space Centre are underway, and all systems are reportedly on track for the scheduled liftoff.

Continue Reading

Science

Meet Homo juluensis: A newly discovered ancient human species

Published

on

By

Meet Homo juluensis: A newly discovered ancient human species

A new ancient human species, Homo juluensis, has been identified by researchers, marking a significant step in understanding human evolution in the Middle Pleistocene epoch. According to findings published in PaleoAnthropology in May 2024, the discovery is based on fossil evidence unearthed in China, with specimens dating between 220,000 and 100,000 years ago. The species, known as “big head people,” is characterised by large skulls, blending features seen in modern humans, Neanderthals and Denisovans.

Fossil Evidence and Characteristics

The fossils forming the basis of this new classification were recovered from sites in Xujiayao and Xuchang in northern and central China, as per reports. Excavations at Xujiayao in the 1970s yielded over 10,000 stone tools and 21 fossil fragments, representing at least 10 individuals. These fossils display large, wide crania with Neanderthal-like characteristics, yet also share traits with modern humans and Denisovans. Four additional ancient skulls discovered at Xuchang exhibit similar features.

The research team, led by Christopher Bae, an anthropologist at the University of Hawai’i and Xiujie Wu, a paleoanthropologist at the Chinese Academy of Sciences, concluded that these fossils represent a distinct hominin population. The findings indicate a likely continuity of hybridisation among Middle Pleistocene hominins, which shaped human evolution in eastern Asia.

Naming and Expert Perspectives

In a statement to Nature Communications, published in November 2024, the researchers advocated for using Homo juluensis to clarify eastern Asia’s complex fossil record. While some experts, such as Chris Stringer of the Natural History Museum in London, have suggested the fossils might align more closely with Homo longi, the designation of Homo juluensis has gained traction.

The name, according to Bae, in a statement, was introduced to improve scientific communication. Paleoanthropologist John Hawks of the University of Wisconsin–Madison noted in a blog post that such terminology allows clearer reference to this population’s place in the human evolutionary narrative. The discovery underscores the intricate relationships within ancient hominin groups and their evolutionary significance.

Continue Reading

Trending