Connect with us

Published

on

NASA’s DART spacecraft successfully slammed into a distant asteroid at hypersonic speed on Monday in the world’s first test of a planetary defense system, designed to prevent a potential doomsday meteorite collision with Earth.

Humanity’s first attempt to alter the motion of an asteroid or any celestial body played out in a NASA webcast from the mission operations center outside Washington, DC, 10 months after DART was launched.

The livestream showed images taken by DART’s camera as the cube-shaped “impactor” vehicle, no bigger than a vending machine with two rectangular solar arrays, streaked into the asteroid Dimorphos, about the size of a football stadium, at 7:14 pm EDT (23:14 GMT) some 6.8 million miles (11 million km) from Earth.

The $330 million (roughly Rs. 2,683 crore) mission, some seven years in development, was devised to determine if a spacecraft is capable of changing the trajectory of an asteroid through sheer kinetic force, nudging it off course just enough to keep Earth out of harm’s way.

Whether the experiment succeeded beyond accomplishing its intended impact will not be known until further ground-based telescope observations of the asteroid next month. But NASA officials hailed the immediate outcome of Monday’s test, saying the spacecraft achieved its purpose.

“NASA works for the benefit of humanity, so for us it’s the ultimate fulfillment of our mission to do something like this – a technology demonstration that, who knows, some day could save our home,” NASA Deputy Administrator Pam Melroy, a retired astronaut, said minutes after the impact.

DART, launched by a SpaceX rocket in November 2021, made most of its voyage under the guidance of NASA’s flight directors, with control handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s bullseye impact was monitored in near real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

Cheers erupted from the control room as second-by-second images of the target asteroid, captured by DART’s onboard camera, grew larger and ultimately filled the TV screen of NASA’s live webcast just before the signal was lost, confirming the spacecraft had crashed into Dimorphos.

DART’s celestial target was an oblong asteroid “moonlet” about 560 feet (170 meters) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test could not create a new hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and present a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts. A Dimorphos-sized asteroid, while not capable of posing a planet-wide threat, could level a major city with a direct hit.

Also, the two asteroids’ relative proximity to Earth and dual configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic suicide mission

The mission represented a rare instance in which a NASA spacecraft had to crash to succeed. DART flew directly into Dimorphos at 15,000 miles per hour (24,000 kph), creating the force scientists hope will be enough to shift its orbital track closer to the parent asteroid.

APL engineers said the spacecraft was presumably smashed to bits and left a small impact crater in the boulder-strewn surface of the asteroid.

The DART team said it expects to shorten the orbital path of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered.

A nudge to an asteroid millions of miles away years in advance could be sufficient to safely reroute it.

Earlier calculations of the starting location and orbital period of Dimorphos were made during a six-day observation period in July and will be compared with post-impact measurements made in October to determine whether the asteroid budged and by how much.

Monday’s test also was observed by a camera mounted on a briefcase-sized mini-spacecraft released from DART days in advance, as well as by ground-based observatories and the Hubble and Webb space telescopes, but images from those were not immediately available.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

© Thomson Reuters 2022


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Solves Black Hole Jet X-ray Mystery with IXPE’s Polarization Powers

Published

on

By

NASA Solves Black Hole Jet X-ray Mystery with IXPE’s Polarization Powers

The blazar BL Lacertae, a giant black hole with jets, facing the earth, have made scientists curious about how X-rays are generated in such extreme conditions for a while. NASA’s Imaging X-ray Polarimetry Explorer or IXPE now might have been able to solve the mystery. By a collaboration with radio and optical telescopes and using polarisation measurements of X-ray, IXPE’s produced results indicates that the interaction between fast-moving electrons and photons might be the reason for X-ray emission in such conditions.

Evidence of Compton Scattering

According to the IXPE’s findings, high optical to X-ray polarization ratio indicates that Compton scattering might be the mechanism of X-ray generation. There are two possible and competing explanations of X-ray emission in blazar jets. One saying if the X-rays in the black hole jets are highly polarised, then the X-rays are generated from interactions between photons while the other says a low polarisation indicates X-ray formation by electron-photon interaction.

Leveraging IXPE’s unique X-ray polarisation measuring ability, scientists conducted a focused observation on BL Lac in November 2023. During this period, BL Lac’s optical polarization peaked at 47.5%, the highest recorded for any blazar. Yet IXPE found the X-ray polarization to be much lower, capped at 7.6%. This contrast supports the Compton scattering and possibly irradicates the photon-based explanation.

Milestone for blazar studies

“This was one of the biggest mysteries about supermassive black hole jets,” said Iván Agudo, lead author of the study and astronomer at the Instituto de Astrofísica de Andalucía – CSIC in Spain. The discovery validates IXPE’s mission, launched in December 2021 to study X-ray polarization.

Astrophysicist Enrico Costa, called it one of IXPE’s most significant achievements. Yet, this is just the beginning. Project scientist Steven Ehlert noted the need to observe more blazars, as their emissions vary over time. With IXPE, astronomers are now better equipped to explore these powerful cosmic jets.

Continue Reading

Science

SpaceX Falcon 9 Successfully Launches 28 Starlink Satellites to Orbit From Florida

Published

on

By

SpaceX Falcon 9 Successfully Launches 28 Starlink Satellites to Orbit From Florida

SpaceX continued its rapid-fire Starlink deployment campaign on Tuesday night (May 6), lofting 28 more internet satellites to orbit atop a Falcon 9 rocket from Florida’s Cape Canaveral Space Force Station. The launch itself took place at 9:17 p.m. EDT (0117 GMT on May 7) from Launch Complex-40, marking the company’s 53rd Falcon 9 launch of 2025 and the 36th dedicated Starlink mission this year. The payload offers worldwide internet connectivity by adding to SpaceX’s swiftly expanding array of over 7,200 Starlink satellites in low Earth orbit.

As per a Space.com report, B1085, the reusable first-stage booster, executed a perfect main engine cut about 2.5 minutes after launch, then stage separation and a retrograde burn to stop its descent. Roughly eight minutes after launch, B1085 successfully landed on the autonomous drone ship, stationed in the Atlantic Ocean. The mission was the seventh flight for this particular booster, which had previously supported two other Starlink missions.

The Falcon 9‘s upper stage continued into orbit and deployed the 28 Starlink satellites roughly one hour after launch. These newly deployed units will spend several days adjusting their positions before integrating into the broader Starlink network, which now blankets most of the globe except the polar regions. Each satellite, compact but equipped with large solar arrays, forms part of the larger web responsible for delivering high-speed satellite internet.

The May 6 launch demonstrates how quickly SpaceX is moving to meet its broadband goals. In addition to Falcon 9 missions, the company has performed two Starship test flights this year to demonstrate development progress in both satellite launch and heavy-lift capability.

An expanding constellation would finally bring reliable internet coverage to remote locations around the world. The drive to offer a reliable internet connection to remote sites globally reflects a commitment to putting the world more in reach.

Continue Reading

Science

Asteroid Vesta May Be a Fragment of a Lost Planet, Say Scientists

Published

on

By

Asteroid Vesta May Be a Fragment of a Lost Planet, Say Scientists

Asteroid Vesta, long considered a stalled protoplanet, may actually be a massive fragment of a larger world that once existed in our solar system. New findings based on gravity-field mapping and spin-rate data suggest Vesta lacks the dense core typically found in differentiated planetary bodies. The discovery challenges previous assumptions, drawn from NASA’s Dawn mission in 2012, that classified Vesta as an embryonic planet. Now, scientists report that Vesta might have been ejected from a differentiated world in a massive collision 4.5 billion years ago, upending ideas about the development of planets and asteroids.

New Gravity Data Suggests Vesta Is Debris from a Destroyed Planet, Not a Protoplanet

As per a new study published in Nature Astronomy on April 23, 2025, Vesta does not quite match the former model. Refined calibration methods polished the radio Doppler signals, confirming the absence of a metal-rich core, which was inconsistent with earlier work. Seth Jacobson of Michigan State University, who led the research, stated the new interpretation marks a major shift in planetary science. While Vesta’s basaltic, volcanic surface still indicates geological activity, its internal uniformity contradicts the expectations of a body that once underwent full differentiation.

This paradox has caused scientists to reconsider the asteroid’s heritage. One scenario is that Vesta started to differentiate but never got very far. But data from meteorites called howardite-eucrite-diogenites (HEDs), thought to have come from Vesta, show no signs of such incomplete differentiation. Jacobson and his team instead favour the explanation that Vesta was formed from material blasted off a fully developed planet during an ancient planetary collision, which could also illustrate its volcanic surface without requiring it to have a dense core.

The results not only question Vesta’s identity but also suggest a possibility of a more general theory: that other asteroids could also be pieces of shattered planets. NASA’s Psyche and ESA’s Hera missions, planned for the next decades, intend to do such gravity investigations, which could ultimately confirm this new view. Jacobson noted that Vesta’s composition could even hint at a shared origin with Earth or other early planets, a hypothesis that may reshape asteroid science entirely.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Unveils 2025 Smart TV Lineup in India With Vision AI Features: Price, Availability



Asus ROG Ally 2 Spotted via US FCC Listing Alongside ‘Project Kennan’ Xbox Handheld

Related Stories

Continue Reading

Trending