Connect with us

Published

on

In a world first, NASA has crashed a spacecraft into an asteroid in an attempt to push the rocky traveler off its trajectory. The Double Asteroid Redirection Test – or DART – is meant to test one potential approach that could prevent an asteroid from colliding with Earth. David Barnhart is a professor of astronautics at the University of Southern California and director of the Space Engineering Research Center there. He watched NASA’s live stream of the successful mission and explains what is known so far.

1. What do the images show?

The first images, taken by a camera aboard DART, show the double asteroid system of Didymos – about 2,500 feet (780 meters) in diameter – being orbited by the smaller asteroid Dimorphos that is about 525 feet (160 meters) long.

As the targeting algorithm on DART locked onto Dimorphos, the craft adjusted its flight and began heading towards the smaller of the two asteroids. The image taken at 11 seconds before impact and 42 miles (68 kilometers) from Dimorphos shows the asteroid centered in the camera’s field of view. This meant that the targeting algorithm was fairly accurate and the craft would collide right at the center of Dimorphos.

The second-to-last image, taken two seconds before impact shows the rocky surface of Dimorphos, including small shadows. These shadows are interesting because they suggest that the camera aboard the DART spacecraft was seeing Dimorphos directly on but the Sun was at an angle relative to the camera. They imply the DART spacecraft was centred on its trajectory to impact Dimorphos at the moment, but it’s also possible the asteroid was slowly rotating relative to the camera.

The final photo, taken one second before impact, only shows the top slice of an image but this is incredibly exciting. The fact that NASA received only a part of the image implies that the shutter took the picture but DART, traveling at around 14,000 miles per hour (22,500 kilometers per hour) was unable to transmit the complete image before impact.

2. What was supposed to happen?

The point of the DART mission was to test whether it is possible to deflect an asteroid with a kinetic impact – by crashing something into it. NASA used the analogy of a golf cart hitting the side of an Egyptian pyramid to convey the relative difference in size between tiny DART and Dimorphos, the smaller of the two asteroids. Prior to the test, Dimorphos orbited Didymos in roughly 16 hours. NASA expects the impact to shorten Dimorphos’ orbit by about 1 percent or roughly 10 minutes. Though small, if done far enough away from Earth, a nudge like this could potentially deflect a future asteroid headed towards Earth just enough to prevent an impact.

3. What do we know already?

The last bits of data that came from the DART spacecraft right before impact show that it was on course. The fact that the images stopped transmitting after the target point was reached can only mean that the impact was a success.

While there is likely a lot of information to be learned from the images taken by DART, the world will have to wait to learn whether the deflection was also a success. Fifteen days before the impact, DART released a small satellite with a camera that was designed to document the entire impact. The small satellite’s sensors should have taken images and collected information, but given that it doesn’t have a large antenna onboard, the images will be transmitted slowly back to Earth, one by one, over the coming weeks.

4. What does the test mean for planetary defense?

I believe this test was a great proof-of-concept for many technologies that the US government has invested in over the years. And importantly, it proves that it is possible to send a craft to intercept with a minuscule target millions of miles away from Earth. From that standpoint DART has been a great success.

Over the course of the next months and years, researchers will learn just how much deflection the impact caused – and most importantly, whether this type of kinetic impact can actually move a celestial object ever so slightly at a great enough distance to prevent a future asteroid from threatening Earth.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

Published

on

By

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

X-59 of NASA has been designed from the ground to fly at a faster speed of sound without making thunderous sonic booms, which are usually associated with supersonic flight. This 99-foot aircraft, which features a logically elongated design, jettisons the front windscreen and is now heading towards the runway. Pilots can see what is at the front through an augmented reality (AR) enabled closed-circuit camera system, which is termed by NASA as the External Vision System (XVS). NASA took control of an experimental aircraft and performed taxi tests on it during this month.

X-59’s Futuristic Design: Eliminating Sonic Booms with External Vision System

According to As per NASA, the test pilot Nils Larson, during the test, drove the X-59 at the runway by keeping a low speed. This is done to ensure the working of the steering and braking systems of the jet. Lockheed Martina and NASA would perform the taxi tests at high speed, in which the X-59 will move faster to make it to the speed at which it will go for takeoff.

Taxi tests are held at the U.S. Air Force’s Plant 42 facility in Palmdale, California. The contractors and the Air Force utilise the plant for manufacturing and testing the aircraft. Lockheed Martin has developed this aircraft, whose Skunk Works is found in Plant 42.

Taxi Tests at Plant 42: NASA and Lockheed Martin Prepare X-59 for First Flight

Some advanced aircraft of the U.S. military were developed to a certain extent at Plant 42, together with the B-2 Spirit, the F-22 Raptor, and the uncrewed RQ-170 Sentinel spy drone.

SOFIA airborne observatory aircraft, which is a flying telescope called Plant 42, home recently retired. The space shuttle of the agency is the world’s first reusable spacecraft; these were assembled and tested at the facility.

Such taxi tests have started over the last months. NASA worked in collaboration with the Japan Aerospace Exploration Agency for testing a scale model of the X-59 in the supersonic wind tunnel to measure the noise created under the aircraft.

Continue Reading

Science

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

Published

on

By

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

In recent observations, NASA’s Juno spacecraft has significantly detected the presence of a variety of plasma waves. The emergence of these waves on Jupiter’s powerful magnetic field is projected to be surprising, as their existence was never marked in the planetary magnetospheres. However, scientists might have come out with an explanation. Furthermore, the current studies have been questioned by scientists surfacing the activity at the North Pole. The article below will exemplify the findings and shed light on the plasmas. 

Uncovering Mystery at Jupiter’s North Pole 

According to a paper published in the Physical Review Letters, the scientists have uncovered the explanation behind the presence of these strange waves. They mainly suspect that the formation of these waves lies behind their evolution as a plasma, which later transforms into something different. 

Inside Jupiter’s Plasmas and Their Variants 

Plasmas are best referred to as the waves that pass through the amalgamation of the charged particles in the planet’s magnetosphere.These plasma waves come across in two forms: One, Langmuir waves, which are high-pitched lights crafted with electrons, while the other, Alfven waves, are slower, formed by ions (heavy particles). 

About Juno’s Findings

As unveiled by the Juno, the findings turned out to be questionable after the scientists noted that in Jupiter’s far northern region, the plasma waves were relatively slower. The magnetic field is about 40 times stronger than the Earth’s, but scientists were shocked to witness the results as the waves were slower. To analyse this further, a team from the University of Minnesota, led by Robert Lysak, identified the possibility of Alfven waves transforming into Langmuir waves. Post studying the data extracted from the Juno, the researchers then began to compare the relationship between the plasma wave frequency and number. 

According to Lysak’s research team, near Jupiter’s north pole, there might be a potential pathway of Alfven waves, which are massive in numbers, transforming into Langmuir waves. Scientists are also predicting that the reason behind evolution might be strong electrons that are shooting upwards at a very high energy. This discovery was made in the year 2016. Considering the current findings, the researchers indicate that Jupiter’s magnetosphere may comprise a new type of plasma wave mode that occurs during high magnetic field strength. 

Continue Reading

Science

Russia Expands Space Weather Network, Launches Iran’s Nahid-2 in Joint Mission

Published

on

By

Russia Expands Space Weather Network, Launches Iran’s Nahid-2 in Joint Mission

Russia sent two new Ionosfera-M satellites into orbit on a Soyuz-2 on July 25, 2025. Rocket 1b from the Vostochny Cosmodrome in Siberia. The mission also placed Iran’s Nahid-2 communications satellite in orbit. These satellites will complement a four-satellite constellation aimed at keeping track of Earth’s upper atmosphere and space weather conditions, particularly the solar wind that can knock satellites and communications systems offline. The flight indicates Russia’s scientific ambitions and collaboration with Iran’s space program, showing Russia’s function in launching Tehran’s orbital assets. Both countries gain from the collaborative mission.

Russian Space Weather Satellites

According to official sources, Russia’s new Ionosfera-M probes, 3 and 4, follow two identical satellites launched in November 2024. Together the four craft form a mini-constellation orbiting about 820 kilometers above Earth. The network is explicitly designed to study space weather in the ionosphere, the charged upper atmosphere.

It will track solar wind and related phenomena that can disturb communications and navigation systems. The latest pair is being inserted into an orbital plane perpendicular to the first two, greatly expanding three-dimensional coverage of near-Earth space. They also carry a new Ozonometr-TM instrument to measure upper-atmosphere ozone for the first time in this mission.

Iranian Payload and International Implications

An Iranian communications satellite, Nahid-2, was also aboard the Soyuz mission.Nahid-2 is intended to bolster Iran’s civilian communications in space, an important capability given Iran’s limited homegrown launch capabilities. Russia’s role in the delivery of the payload reflects cooperation between the countries in space technology.

With the help of Russia, Iran can continue its satellite building efforts, even though these are restricted by the international community from also involving rocket export limitations. That Moscow has such a product even while Iran is under sanctions underscores the depth of their two-nation space partnership. This mission represents Russia’s support for ally’s space aspirations and the broader geopolitical implications of such collaborative efforts.

Continue Reading

Trending