Connect with us

Published

on

A SpaceX rocket soared into orbit from Florida on Wednesday carrying the next long-term International Space Station crew, with a Russian cosmonaut, two Americans and a Japanese astronaut flying together in a demonstration of US-Russian teamwork in space despite Ukraine war tensions.

A high-ranking official of the Russian space agency Roscosmos said shortly after the launch that the flight marked “a new phase of our cooperation” with the US space agency NASA.

The SpaceX launch vehicle, consisting of a Falcon 9 rocket topped with a Crew Dragon capsule dubbed Endurance, lifted off into clear skies at noon EDT (9:30pm IST) from NASA‘s Kennedy Space Center in Cape Canaveral. The two-stage, 23-story-tall Falcon 9 ascended from the launch tower as its nine Merlin engines roared to life in billowing clouds of vapor and a reddish-orange fireball.

The mission is notable for the inclusion of Anna Kikina, 38, the lone female cosmonaut on active duty with Roscosmos, making it the first spaceflight with a Russian launched from US soil in two decades. As the spacecraft entered Earth orbit, Kikina radioed her thanks to NASA, Roscosmos and their International Space Station (ISS) partners for “giving us this great opportunity.”

“We’re so glad to do it together,” Kikina said.

Kikina, who had trained in the US for the flight since spring 2021, was essentially swapping places with a NASA astronaut who took her seat aboard a Russian Soyuz flight to the ISS last month under a new ride-sharing deal signed by NASA and Roscosmos in July.

About nine minutes after Wednesday’s launch, the rocket’s upper stage delivered the Crew Dragon into a preliminary orbit as it streaked through space at nearly 16,000 miles per hour (27,000 kph). The reusable lower-stage booster flew itself back to Earth and landed safely on a drone recovery vessel at sea.

The four crew members and their autonomously flying capsule were due to reach the ISS in about 29 hours, on Thursday evening, to begin a 150-day science mission aboard the orbital laboratory some 250 miles (420 km) above Earth.

The mission, designated Crew-5, marks the fifth full-fledged ISS crew NASA has flown aboard a SpaceX vehicle since the private rocket venture founded by Tesla CEO Elon Musk began sending US astronauts aloft in May 2020.

‘Smooth ride’

The team was led by Nicole Aunapu Mann, 45, who became the first Native American woman sent to orbit by NASA and the first woman to take the commander’s seat of a SpaceX Crew Dragon.

Moments after reaching orbit, as mission control wished the crew “Godspeed,” Mann radioed back, “Awesome. Thank you so much to the Falcon team. Whew! That was a smooth ride uphill.”

Mann, a U.S. Marine Corps colonel and combat fighter pilot, is also among the first group of 18 astronauts selected for NASA’s upcoming Artemis missions aimed at returning humans to the moon later this decade.

The designated pilot was Mann’s fellow spaceflight rookie Josh Cassada, 49, a U.S. Navy aviator and test pilot with a doctorate in high-energy particle physics. Rounding out the crew from Japan’s space agency JAXA was Koichi Wakata, 59, a robotics expert making his fifth voyage to space.

The team will be welcomed by seven existing ISS occupants – the Crew-4 team consisting of three Americans and an Italian astronaut – as well as two Russians and the NASA astronaut who flew with them to orbit on a Soyuz flight.

The new arrivals are set to conduct more than 200 experiments, many focused on medical research ranging from 3-D “bio-printing” of human tissue to a study of bacteria cultured in microgravity.

ISS, the length of a football field, has been continuously occupied since 2000, operated by a US-Russian-led consortium that includes Canada, Japan and 11 European countries. It was born in part to improve relations between Washington and Moscow following the Soviet Union’s collapse and the end of Cold War rivalries that spurred the original American-Soviet space race.

NASA-Roscosmos relations have been tested since Russia invaded Ukraine in February and US imposed sweeping sanctions against Moscow.

At a post-launch NASA-SpaceX briefing on Wednesday, Sergei Krikalev, head of human spaceflight for Roscosmos, said he and the agency chief Yuri Borisov were seeking to ease tensions after Borisov’s predecessor, Dmitry Rogozin, raised questions about the future of the ISS partnership.

Krikalev cited bilateral teamwork in space dating back to the Apollo-Soyuz era in 1975, saying, “We started our cooperation many years ago, over 40 years ago, and will continue our cooperation as long as I can imagine.”

The July crew-exchange deal paved the way for resuming routine joint US-Russian flights to the ISS that had begun during the space shuttle era and continued after shuttles ceased flying in 2011. From then until SpaceX began offering crewed launch services nine years later, Soyuz was the only avenue to orbit for US astronauts.

© Thomson Reuters 2022

Continue Reading

Science

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Published

on

By

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Astronomers have discovered the third interstellar comet to pass through our solar system. Named 3I/ATLAS (initially A11pl3Z), it was first spotted July 1 by the ATLAS telescope in Chile and confirmed the same day. Pre-discovery images show it in the sky as far back as mid-June. The object is racing toward the inner system at roughly 150,000 miles per hour on a near-straight trajectory, too fast for the Sun to capture. Estimates suggest its nucleus may be 10–20 km across. Now inside Jupiter’s orbit, 3I/ATLAS will swing closest to the Sun in October and should remain observable into late 2025.

Discovery and Classification

According to NASA, in early July the ATLAS survey telescope in Chile spotted a faint moving object first called A11pl3Z, and the IAU’s Minor Planet Center confirmed the next day that it was an interstellar visitor. The object was officially named 3I/ATLAS and noted as likely the largest interstellar body yet detected. At first it appeared to be an ordinary near-Earth asteroid, but precise orbit measurements showed it speeding at ~150,000 mph – far too fast for the Sun to capture. Astronomers estimate 3I/ATLAS spans roughly 10–20 km across. Signs of cometary activity – a faint coma and short tail – have emerged, earning it the additional comet designation C/2025 N1 (ATLAS).

Studying a Pristine Comet

3I/ATLAS was spotted well before its closest approach, giving astronomers time to prepare detailed observations. It will pass within about 1.4 AU of the Sun in late October. Importantly, researchers can study it while it is still a pristine frozen relic before solar heating alters it. As Pamela Gay notes, discovering the object on its inbound leg leaves “ample time” to analyze its trajectory. Astronomers are now racing to obtain spectra and images – as Chris Lintott warns, the comet will be “baked” by sunlight as it nears perihelion.

Determining its composition and activity is considered “a rare chance” to learn how planets form in other star systems. With new facilities like the Vera C. Rubin Observatory coming online, researchers expect more such visitors in the years ahead. 3I/ATLAS offers a rare chance to study material from another star system.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Science

NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax

Published

on

By

NASA's New Horizons Proves Deep-Space Navigation via Stellar Parallax

NASA’s New Horizons spacecraft carried out an unprecedented deep-space star navigation test while 438 million miles from Earth. Using its long-range camera in April 2020, it captured images of Proxima Centauri and Wolf 359, which appeared slightly shifted in the sky compared to Earth’s view – a striking demonstration of stellar parallax. It was the first-ever demonstration of deep-space stellar navigation. By comparing these images to Earth-based observations and a 3D star chart, scientists calculated New Horizons’ position to within about 4.1 million miles, only about 26 inches across the United States.

Stellar Parallax Test

According to the paper describing the results, accepted for publication in The Astronomical Journal, New Horizons’ camera imaged Proxima Centauri (4.2 light-years away) and Wolf 359 (7.86 light-years) on April 23, 2020. From the spacecraft’s distant vantage point, the two stars appear in different positions than seen from Earth – the essence of stellar parallax. By comparing those images with Earth-based data and a three-dimensional map of nearby stars, the team worked out the probe’s location to within about 4.1 million miles.

As lead author Tod Lauer explained, “Taking simultaneous Earth/Spacecraft images we hoped would make the concept of stellar parallaxes instantly and vividly clear”. He added, “It’s one thing to know something, but another to say ‘Hey, look! This really works!’”.

New Horizons and Future Missions

New Horizons, the fifth spacecraft to leave Earth and reach interstellar space, flew past Pluto and its moon Charon in 2015, sending home the first close-up images of those distant icy worlds. Now on an extended mission, the probe is studying the heliosphere.

New Horizons’ principal investigator Alan Stern called the parallax test “a pioneering interstellar navigation demonstration” that shows a spacecraft can use onboard cameras “to find its way among the stars”, in a statement. He also noted it “could be highly useful for future deep space missions in the far reaches of the Solar System and in interstellar space”

Continue Reading

Science

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Published

on

By

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Marine animals like fish and seals have long inspired ocean engineers due to their fluid, energy-efficient movements. Now, researchers are turning to these sea animals to create a new class of underwater gliders that requires very little energy, according to a team led by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison. They used artificial intelligence to design forms that slide through the water with less resistance, making long-term ocean exploration more efficient. These gliders, fabricated via 3D printing, promise better data collection on currents, salt levels, and climate impacts.

AI-Powered 3D Designs Create Energy-Efficient Underwater Gliders Inspired by Marine Life Forms

As per a study published on the arXiv preprint server, the team used machine learning to create and simulate numerous novel 3D glider shapes. By comparing traditional models—like submarines and sharks—with digitally altered versions, their algorithm learnt how different designs behaved at various “angles-of-attack.” A neural network then evaluated the lift-to-drag ratio of each shape, identifying those most likely to glide efficiently through water. These shapes were then fabricated using lightweight materials that minimised energy use.

In tests, two AI-generated prototypes—one shaped like a two-winged plane and the other like a four-finned flatfish—were built and tested both in wind tunnels and underwater. Key hardware was integrated with the gliders, including buoyancy control by a pump and a mass shifter to move the angle during displacements. The new gliders, with better shapes and lift-to-drag ratios, could travel farther on less power than traditional torpedo-shaped types.

The team added that what they are doing not only makes new types of designs possible but also reduces design times and cuts the cost since it doesn’t require physical prototyping. “This high degree of shape diversity hasn’t been investigated before,” Peter Yichen Chen, an MIT postdoc and co-lead author on the project, mentioned. He also noted that their AI pipeline allows testing forms that would be “very taxing” for humans to manually design.

The future plans are to produce slimmer and more manoeuvrable gliders and to improve the AI system with more configurable options. Intelligent bioinspired vehicles like these, the researchers say, will be essential in studying dynamic ocean environments that are changing quickly with the intensifying demands of industrial activity, ultimately offering more flexible and efficient ways for us to explore Earth’s last frontier.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Observations Give Forgotten Globular Cluster Its Moment to Shine



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Trending