Connect with us

Published

on

During the Diwali festival on October 25, there will be a partial solar eclipse which will be visible from the city as well as from most parts of the country, astrophysicist Debi Prasad Duari said. The eastern metropolis, however, will be able to witness the partial solar eclipse, the second in 2022, for a very small duration, the celestial phenomenon will be better observed in the northern and western regions of the country, he said.

The eclipse will not be observed from northeastern India as the celestial phenomenon will be occurring after sunset in those regions, Duari said.

Apart from India, the October 25 partial cosmic affair will be visible from most parts of Europe, northern Africa, the Middle East, and parts of Asia, Duari elaborated.

“The partial solar eclipse will begin in Iceland at around 2:29 pm IST and will be seen at its maximum from Russia at 4:30 hours IST. It will end at around 6:32pm IST over the Arabian Sea,” he told PTI while sharing information on the celestial event.

“The eastern part of the country will see the partial eclipse only marginally, that also during the sunset. The northern and western part of the country is a better location to observe the partial eclipse with a better view and for a longer period of time.

“During the new moon (Amavasya) the Sun, Moon, and Earth almost come in a linear configuration, whereby from the Earth we can see the Moon without any sunlight falling on it. But at times, as on October 25, the Sun, Moon, and Earth will almost be on the same plane resulting in the moon appearing to cover the Sun partially for a period of time causing a partial solar eclipse,” he explained.

In and around the metropolis, the partial eclipse will begin at around 4:52pm, the maximum occurring at 5:01pm, and will cease to be seen at 5:03pm at the sunset, Duari said.

“Even at the maximum eclipse, only 4 percent of the lighted disc of the setting Sun will be covered by the Moon,” he said.

In the north Bengal town of Siliguri, the celestial phenomenon will be occurring between 4:41pm and 4:59pm and during the maximum eclipse (at around 4:56pm) about 8.91 percent of the Sun will be covered by the Moon’s disc, Duari stated.

“In New Delhi, it will commence at around 4:29pm and end with the sunset at 6:09pm with the maximum eclipse to occur at 5:42pm when the Sun will be obscured by the Moon by an amount of only 24.5 percent,” Duari said.

Jaisalmer in Rajasthan will experience the eclipse from 4:26pm to 6:09pm with the maximum at around 5:30pm. when the disc of the Sun will be obscured by 42.5 percent.

“In Mumbai, the eclipse will begin at 4:49pm with the maximum occurring at around 5:42pm. It will end at 6:09pm, when the Sun appears to go down the Arabian Sea at sunset. Here, the Sun’s disc will be covered by about 24.5 percent,” he added.

In southern and central India, the eclipse will be again observed just before sunset with Nagpur experiencing the eclipse from 4:49pm to 5:42pm. In Bengaluru, the eclipse will begin at 5:12pm, reaching its maximum at 5:49pm and ending at 5:55pm during the sunset. Chennai will have the eclipse during 5:14pm to 5:44pm, the astrophysicist said.

The next major solar eclipse to be visible from India will be an annular eclipse on May 21, 2031 when the annularity can be observed from a narrow patch of land in south India, he said.

Three years later, on March 20, 2034, the next total solar eclipse will be visible from India and the totality will be observed from the northernmost part of Kashmir.

On both occasions, the whole country will observe a partial eclipse of varying magnitude depending upon its geographical location, Duari said.

Another partial eclipse can be seen from the northern part of India on June 1, 2030.

Referring to the harm caused to the eyes by Sun’s rays during an eclipse, Duari cautioned the sky enthusiasts to take “extreme precaution” while observing it.

“Even if the degree of the partial eclipse is not appreciable in most of the country, extreme precaution has to be taken by everybody who wants to observe this cosmic event. The Sun’s rays can be very harmful for the eye and can become critical,” he said.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Hubble Space Telescope Helps Confirm the First Solitary Black Hole

Published

on

By

NASA Hubble Space Telescope Helps Confirm the First Solitary Black Hole

For the first time, the existence of a lone black hole has been confirmed by scientists. This black hole has no star orbiting it. According to the statement by Kailash Sahu, astronomer at the Space Telescope Science Institute in Baltimore, “it’s the only one so far”. The discovery made headlines in the year 2022, when Sahu and his Team claimed a dark object was moving through the constellation Sagittarius. However, another team of researchers disputed the claims by identifying the object as a neutron star.

About the Discovery

This discovery came into the light three years ago. All the stellar-mass black holes are accompanied by stars that betray their presence and race around an invisible star, along with three times the sun’s mass. Such a procedure indicates the presence of black holes rather than a neutron star.

On the contrary, the solitary black holes are expected to be common, but are very hard to find. Likewise, the one in Sagittarius was identified while passing through the dim background star and additionally shifting its position due to the black hole’s gravity. Recently, Sahu’s efforts were reported in the Astrophysical Journal, about the new observations from NASA’s Hubble Space Telescope, confirming the presence of a lone black hole in Sagittarious.

Black Hole Key Findings

Although the passage occurred first in the year 2011, the original discovery relied on the Hubble measurements from the year 2011 to 2017. However, the new data has been gained from the Hubble observations from the year 2021 to 2022, accompanied by the data received from the Gaia Spacecraft.

How Big is a Black Hole?

The ideal size of this lone black home is seven times as huge as the sun. In recent observations, a different team of scientists revisited the project and identified the size as massive as six times that of the sun. The theories of the scientists match with that of Sahu’s observation.

The research continues for detecting the black holes in Sagittarius. Located at a distance of 5,000 light years away from Earth, this solitary black hole is yet to be observed from different aspects. The astronomer, Sahu, hopes to find more lone black holes with the effective use of the Nancy Grace Roman Space Telescope, which is set to launch in the year 2027.

Continue Reading

Science

Mars’ Carbonate Mystery and Ancient Atmosphere Deciphered

Published

on

By

Mars’ Carbonate Mystery and Ancient Atmosphere Deciphered

The evolution of Mars and its ancient atmosphere has been a prominent research topic for scientists. NASA’s Curiosity Mars rover could potentially be the ultimate solution for the temperature and other details about the planet. As per the assumptions made by the researchers, Mars’s atmosphere was crafted with a thick layer of carbon dioxide whereas the surface comprised liquid water. Likewise, the presence of carbonate minerals on the planet would be the result of a potential reaction between water, carbon dioxide, and Martian rocks, researchers say.

Presence of Siderite Detected

Recently reported in the April paper of Science, the presence of siderite has been discovered within the sulfate-rich rocky layers of Mount Sharp on Mars. The discovery was made at three of Curiosity’s drill sites.

According to the lead author and Associate Professor at the University of Calgary, Canada, Benjamin Tutolo, “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars”.

About the Drilling Process

To achieve an understanding of the chemical and mineral makeup at the surface of Mars, Curiosity drills three to four centimeters down into the subsurface. Further, the powdered rock samples are then dropped into the CheMin instrument. This instrument analyses the rocks and soil via X-ray diffraction. The CheMin instrument is driven by NASA’s Ames Research Centre in California’s Silicon Valley.

The data analysis of the discovery was conducted by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA Johnson Space Center in Houston.

Potential Findings and Atmosphere at Mars

The discovery of this carbonate mineral could potentially be hiding other minerals beneath the surface, in near-infrared satellite analysis. The possible presence of carbonates in sulfate-rich layers across Mars may result in the amount of carbon dioxide, which will be ideal to support the liquid water and create conditions warm enough to sustain water. Also, the scientists doubt the existence of other carbonates, or maybe they might have vanished from space.

To Conclude

The missions and analyses are still undergoing, and they will continue the research in the future. The findings can be confirmed post-research on the sulfate-rice area on the red planet. As the findings arrive, they will help us understand the transformation of the planet and will offer clarity on the ancient atmosphere.

Note: Curiosity is a part of NASA’s Mars Exploration Program (MEP) portfolio. It was built by NASA’s Jet Propulsion Laboratory, managed by Caltech in Pasadena, California. The mission is successfully led by JPL on behalf of NASA’s Science Mission Directorate in Washington.

Continue Reading

Science

JWST Might Have Revealed New Signs of Alien Life on Nearby Exoplanet

Published

on

By

JWST Might Have Revealed New Signs of Alien Life on Nearby Exoplanet

Scientists discovered suitable biosignature gases for alien life on planet K2-18b. On K2-18b, NASA’s James Webb Space Telescope (JWST) noticed dimethyl sulfide (DMS), a chemical primarily produced by living creatures on Earth. Notably, the exoplanet is nine times the size of our planet and exists in the habitable zone of its planetary system. As exoplanets pass in front of their home stars, the team probes planetary atmospheres using JWST’s Mid-Infrared Instrument (MIRI). Based on its size and other properties, astronomers think K2-18b is a “Hycean” world—that is, one with a large liquid-water ocean and a hydrogen-rich atmosphere.

Although the researchers estimate concentrations of more than 10 parts per million by volume on Earth, they are less than one part per billion. However, further research is required to confirm and expand on their findings.

NASA’s Webb Telescope Finds Possible Life Signs on Exoplanet K2-18b

According to a new study, which was published in The Astrophysical Journal Letters, chemical proof of life on the far-off exoplanet K2-18b has come from NASA’s James Webb Space Telescope. Rare on other planets or moons, these signals, which point to the presence of dimethyl sulfide and dimethyl disulfide, are found in marine plants and bacteria on Earth.

Because K2-18b boasts a hydrogen-rich atmosphere and a planet-wide ocean, researchers classify it as a “hycean world.” Methane and carbon dioxide, found in the planet’s atmosphere in 2023, were the first carbon-based compounds found in the habitable zone of an exoplanet. Though the levels had minimal statistical significance, the researchers also found likely DMS signals, therefore confounding DMS diagnosis. The results underline the possibilities of life on exoplanets.

JWST Data Hints at High Sulfur Levels on Exoplanet, Life or Not

MIRI observations from the JWST expose features in planetary atmospheres that point to DMS or DMDS helping to explain them. Scientists estimate that atmospheric DMS and DMDS levels could be substantially greater than on Earth, that is, above 10 parts per million. Differentiating DMS from DMDS requires more data. Scientists want to investigate undiscovered chemical processes involving no living entities able to generate DMS and DMDS from nothing.

Continue Reading

Trending