Connect with us

Published

on

In July, a puzzling new image of a distant extreme star system surrounded by surreal concentric geometric rungs had even astronomers scratching their heads. The picture, which looks like a kind of “cosmic thumbprint”, came from the James Webb Space Telescope, NASA’s newest flagship observatory.

The internet immediately lit up with theories and speculation. Some on the wild fringe even claimed it as evidence for “alien megastructures” of unknown origin.

Luckily, our team at the University of Sydney had already been studying this very star, known as WR140, for more than 20 years – so we were in a prime position to use physics to interpret what we were seeing.

Our model, published in Nature, explains the strange process by which the star produces the dazzling pattern of rings seen in the Webb image (itself now published in Nature Astronomy).

The secrets of WR140

WR140 is what’s called a Wolf-Rayet star. These are among the most extreme stars known. In a rare but beautiful display, they can sometimes emit a plume of dust into space stretching hundreds of times the size of our entire Solar System.

The radiation field around Wolf-Rayets is so intense, dust and wind are swept outwards at thousands of kilometres per second, or about 1 percent the speed of light. While all stars have stellar winds, these overachievers drive something more like a stellar hurricane.

Critically, this wind contains elements such as carbon that stream out to form dust.

WR140 is one of a few dusty Wolf-Rayet stars found in a binary system. It is in orbit with another star, which is itself a massive blue supergiant with a ferocious wind of its own.

Only a handful of systems like WR140 are known in our whole galaxy, yet these select few deliver the most unexpected and beautiful gift to astronomers. Dust doesn’t simply stream out from the star to form a hazy ball as might be expected; instead it forms only in a cone-shaped area where the winds from the two stars collide.

Because the binary star is in constant orbital motion, this shock front must also rotate. The sooty plume then naturally gets wrapped into a spiral, in the same way as the jet from a rotating garden sprinkler.

WR140, however, has a few more tricks up its sleeve layering more rich complexity into its showy display. The two stars are not on circular but elliptical orbits, and furthermore, dust production turns on and off episodically as the binary nears and departs the point of closest approach.

An almost perfect model

By modelling all these effects into the three-dimensional geometry of the dust plume, our team tracked the location of dust features in three-dimensional space.

By carefully tagging images of the expanding flow taken at the Keck Observatory in Hawaii, one of the world’s largest optical telescopes, we found our model of the expanding flow fit the data almost perfectly.

Except for one niggle. Close in right near the star, the dust was not where it was supposed to be. Chasing that minor misfit turned out to lead us right to a phenomenon never before caught on camera.

The power of light

We know that light carries momentum, which means it can exert a push on matter known as radiation pressure. The outcome of this phenomenon, in the form of matter coasting at high speed around the cosmos, is evident everywhere.

But it has been a remarkably difficult process to catch in the act. The force fades quickly with distance, so to see material being accelerated you need to track very accurately the movement of matter in a strong radiation field.

This acceleration turned out to be the one missing element in the models for WR140. Our data did not fit because the expansion speed wasn’t constant: the dust was getting a boost from radiation pressure.

Catching that for the first time on camera was something new. In each orbit, it is as if the star unfurls a giant sail made of dust. When it catches the intense radiation streaming from the star, like a yacht catching a gust, the dusty sail makes a sudden leap forward.

Smoke rings in space

The final outcome of all this physics is arrestingly beautiful. Like a clockwork toy, WR140 puffs out precisely sculpted smoke rings with every eight-year orbit.

Each ring is engraved with all this wonderful physics written in the detail of its form. All we have to do is wait and the expanding wind inflates the dust shell like a balloon until it is big enough for our telescopes to image.

Then, eight years later, the binary returns in its orbit and another shell appears identical to the one before, growing inside the bubble of its predecessor. Shells keep accumulating like a ghostly set of giant nesting dolls.

However, the true extent to which we had hit on the right geometry to explain this intriguing star system was not brought home to us until the new Webb image arrived in June.

Here were not one or two, but more than 17 exquisitely sculpted shells, each one a nearly exact replica nested within the one preceding it.

That means the oldest, outermost shell visible in the Webb image must have been launched about 150 years before the newest shell, which is still in its infancy and accelerating away from the luminous pair of stars driving the physics at the heart of the system.

With their spectacular plumes and wild fireworks, the Wolf-Rayets have delivered one of the most intriguing and intricately patterned images to have been released by the new Webb telescope.

This was one of the first images taken by Webb. Astronomers are all on the edge of our seats, waiting for what new wonders this observatory will beam down to us.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Super Earths are Quite Common Outside the Solar System, New Study Reveals

Published

on

By

Super Earths are Quite Common Outside the Solar System, New Study Reveals

A team of international astronomers, led by Weicheng Zang from the Centre for Astrophysics | Harvard & Smithsonian (Cfa), had announced the discovery of a planet whose size is twice that of Earth, and orbits around its star at a distance farther out than Saturn. These findings reveal how planets differ from our existing solar system. The discovery was first published in the Journal Science on April 25, 2025. Scientists fetched this data from the Korea Microlensing Telescope Network (KMTNet), also known as the largest microlensing survey to date.

This Super Earth, called a planet due to its size being bigger than Earth but smaller than Neptune, is more significant as it is a large study where the masses of many planets have been measured relative to the stars that they orbit. As per physics.org, the team of researchers found fresh information about the number of planets that surround the Milky Way.

Study by KMTNet

According to the study conducted using Korean Microlensing data in which light from faraway objects is amplified through the use of an interfering body, called a planet. This technique is very effective for finding planets at a far distance, between Earth and Saturn’s orbit.

This study is considered to be large for its kind because there are about three times more planets, including planets that are eight times smaller than the previous planets found with the help of microlensing. Shude Mao, a professor, said that the current data gives a hint of how cold planets are formed. With the help of KMTNet data, we can know how these planets were formed and evolved. KMTNet has three telescopes in South Africa, Chile and Australia.

Understanding the Exoplanets

Such studies show that the other systems can have a small, medium and large variety of planets in Earth’s orbit. CFA-led research suggests that there can be more Super Earth Planets in other solar systems’ outer regions. Jennifer Yee says that there is a possibility that outside the Earth’s trajectory, other galaxies may have more such planets that are bigger than Earth’s size yet smaller than Neptune.

Findings and Implications

Youn Kii Jung, who operates KMTNet, says that in Jupiter-like orbits, the other planetary systems may not be similar to ours. Scientists will try to determine how many such planets exist. A study indicates that there are at least as many super-Earths as there are Neptune-sized planets in the universe.

Continue Reading

Science

Magnetic Fields Could Significantly Influence Oscillations in Merging Neutron Stars, Study Finds

Published

on

By

Magnetic Fields Could Significantly Influence Oscillations in Merging Neutron Stars, Study Finds

Magnetic fields may significantly complicate how scientists interpret gravitational wave signals from neutron star mergers, a new study has revealed. These collisions, where two super-dense stellar remnants merge, have long offered astrophysicists a way to probe matter under extreme pressure. The results from the University of Illinois Urbana-Champaign and the University of Valencia reveal that robust magnetic fields form more complex and lengthy patterns in gravitational waves, thereby making it harder to decipher the inner workings of neutron stars. Results could doom post-merger signal interpretation strategies and the equation of states of dense matter as scientists prepare to observe the next generation of gravitational wave observatories.

Magnetic Fields Found to Distort Frequency Signals in Neutron Star Mergers

As per the study published in Physical Review Letters, the researchers simulated general relativistic magnetohydrodynamics — how the strength and arrangement of magnetic fields affect the frequency signals from the remnants left behind after a merger. They went represent real-world conditions by applying two different equations of state (EoS) for neutron stars, different magnetic field configurations, and several mass combinations.

According to lead researcher Antonios Tsokaros, the magnetic field can cause frequency shifts that can misidentify scientists into misattributing them as indications of other physical phenomena like phase transitions or quark-hadron crossover.

The discoveries also imply that scientists need to be cautious about how they interpret signals from neutron-star mergers, lest they slip into assuming how they form. They found that strong magnetic fields can change the emitted signals’ typical oscillation frequency, shifting them from what they should be and from what was predicted by one or another of the competing equations of state at play within these ferocious events.

They also discovered that in the most straightforward type of galaxy mergers they considered in their simulations, the magnetic field became overly amplified so that a greater proportion of the remnants of the merger are more likely to produce further gravitational wave emissions.

Magnetic Fields Hold Key to Unlocking Secrets of Neutron Star Mergers

Neutron stars are what remains of massive stars that have collapsed, and they contain matter so dense that a full teaspoon would weigh billions of tonnes. They have thermodynamic properties that are determined by the EoS and magnetic fields, some orders of magnitude stronger than those that one can produce in a human laboratory.

These extreme features also make neutron stars useful for probing the laws of physics under intense pressure and magnetism. Ever since it was detected in both gravitational waves and gamma rays in 2017, the scientific community has been buzzing about research on neutron star mergers, leading to ever-growing numbers of studies related to these types of mergers.

Professor Milton Ruiz also warns that it would be a mistake to misinterpret observations in the future without considering the effects of the magnetic fields. Higher-resolution simulations are needed, the researchers said, to refine our understanding of how magnetic fields shape cosmic happenings, and endeavours like the Einstein Telescope and Cosmic Explorer loom on the horizon.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Captures Mars, Cosmic Nebulae, and Distant Galaxies in Spectacular 35th Anniversary Photos



Landline Now Available for Streaming on Amazon Prime Video: What You Need to Know

Continue Reading

Science

Hubble Captures Mars, Cosmic Nebulae, and Distant Galaxies in Spectacular 35th Anniversary Photos

Published

on

By

Hubble Captures Mars, Cosmic Nebulae, and Distant Galaxies in Spectacular 35th Anniversary Photos

The Hubble Space Telescope is celebrating 35 years in orbit with an amazing batch of new images, including everything from seasonal changes on Mars to a moth-shaped planetary nebula and a distant spiral galaxy. Hubble was deployed from the space shuttle Discovery on April 24, 1990, and has delivered unparalleled cosmic views from low Earth orbit. Its history as a tool for science and exploration has led to nearly 1.7 million observations, more than 22,000 peer-reviewed scientific papers, and about 400 terabytes of archival data. This data has continued to provide generations with glimpses of stunning views of distant and often dynamic universes.

Hubble Reveals Mars and a Celestial Moth in Dazzling 35th Anniversary Image Collection

According to a celebratory statement, officials at the European Space Agency (ESA), which jointly runs Hubble with NASA, lauded the observatory as a way to link the past and future knowledge of the cosmos. As per ESA, the updated slate was announced to celebrate the 35th year of the telescope, during which the instrument has proven it can uncover unseen beauty and detail in the cosmos. “No generation before Hubble ever saw such vibrant and far-reaching images,” ESA officials mentioned in the official blog post.

Among the newly unveiled images is a stunning pair of ultraviolet portraits of Mars taken in December 2023, when the Red Planet was about 60 million miles from Earth. The left image reveals the Tharsis volcanic plateau and Olympus Mons rising through thin water-ice clouds, while the right side captures the “shark fin” shape of Syrtis Major and high-altitude evening clouds, coinciding with spring’s arrival in Mars’s northern hemisphere.

Another image shows a haunting view of NGC 2899, a planetary nebula about 4,500 light-years away in the constellation Vela. Sculpted by a dying star and possibly two stellar companions, the nebula glows with hydrogen and oxygen. Its gaseous tendrils appear to point back toward a pair of white stars at the core, illuminating the violent winds and radiation shaping this celestial moth.

Hubble Captures Star Birth in Rosette Nebula and Distant Spiral Galaxy NGC 5335

In a close-up of the Rosette Nebula — a stellar nursery 5,200 light-years away — dark clouds of gas and dust are seen being carved by radiation from massive stars. A young star at the upper right is actively creating and ejecting jets of plasma, which glow bright red due to shock waves from their collision with surrounding gases.

The image shows a continuing process of star birth in a region spanning four light years, part of a much larger 100-light-year expanse. Hubble also snapped NGC 5335, a barred spiral galaxy found 225 million light-years away in the constellation of Virgo. This flocculent galaxy lacks clear spiral arms, instead featuring patchy bursts of star formation scattered across its disk.

A central bar channels gas inward, supporting new star formation in a galactic dance that astronomers say will continue for billions of years before reshaping again.

Continue Reading

Trending