Connect with us

Published

on

As India eyes setting up its own space station by 2035, the Indian Space Research Organisation (ISRO) has proposed to the industry to collaborate with it in developing a reusable rocket capable of carrying heavier payloads into orbit.

Dubbed as the Next-Generation Launch Vehicle (NGLV), ISRO Chairman S Somanath said the space agency was working on the design of the rocket and would like the industry to collaborate with it in the development.

“The intent is to bring industry along in the development process. All the money need not be invested by us. We want the industry to invest to create this rocket for all of us,” Somanath told PTI here.

He said the rocket is planned to carry a 10 tonne payload in the Geostationary Transfer Orbit (GTO) or 20 tonnes to the low earth orbit.

Another ISRO official said the new rocket would be helpful as India plans to have its own space station by 2035 and was also eyeing deep space missions, human space flights, cargo missions and putting multiple communication satellites into orbit at the same time.

The NGLV is envisioned as a simple, robust machine designed for bulk manufacturing that will make space transportation more cost effective.

Somanath said the Polar Satellite Launch Vehicle (PSLV), ISRO’s warhorse rocket, was based on the technology developed in the 1980’s and cannot be used to launch rockets in the future.

ISRO plans to have the design of the NGLV ready within a year and offer it to the industry for production, with the first launch tentatively scheduled for 2030.

The NGLV could be a three-stage rocket powered by green fuel combinations such as methane and liquid oxygen or kerosene and liquid oxygen.

According to a presentation made by Somanath at a conference earlier this month, the NGLV could offer launch costs of $1900 (roughly Rs. 1,56,600) per kg of payload in the reusable form and $3,000 (roughly Rs. 2,47,200) per kg in the expendable format.

India’s space economy was pegged at $9.6 billion (roughly Rs. 79,100 crore) in 2020 and is expected to touch $12.8 billion (roughly Rs. 1,05,500 crore) by 2025, according to the ISpA-E&Y report titled ‘Developing the Space Ecosystem in India: Focusing on Inclusive Growth’.

In dollar terms, the satellite services and applications segment would be the largest with a turnover of $4.6 billion (roughly Rs. 37,900 crore) by 2025, followed by ground segment at $4 billion (roughly Rs. 32,900 crore), satellite manufacturing at $3.2 billion (roughly Rs. 26,375 crore) and launch services at $1 billion (roughly Rs. 8,242 crore).

India’s share in the launch services segment was pegged at $600 million (roughly Rs. 4,945 crore) in 2020 and is projected to grow at a compound annual growth rate of 13 percent to reach $1 billion by 2025, the report said.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Astronaut Sunita Williams Refutes Health Concerns Amid ISS Mission

Published

on

By

NASA Astronaut Sunita Williams Refutes Health Concerns Amid ISS Mission

NASA astronaut Sunita Williams has recently addressed speculations surrounding her health condition while on the International Space Station (ISS), discarding recent claims made by media outlets regarding her wellbeing. In response to reports that suggested she appeared “gaunt” due to an extended stay on the ISS, Williams clarified her status during a video interview on November 12, explaining that her weight has remained unchanged since her arrival in orbit.

Routine Exercise and Physical Adaptations

Williams, who commands Expedition 72 aboard the ISS, responded to health concerns publicly, indicating that any changes in her physical appearance are the result of rigorous exercise routines rather than health deterioration. Like all astronauts on extended missions, she has been following an intense workout regimen designed to counteract the muscle and bone density loss commonly associated with prolonged microgravity exposure. Williams stated that her routine includes running on a treadmill, riding an exercise bike and lifting weights. It is a form of exercise that has led to increased muscle mass, particularly in her thighs and glutes, while her overall weight remains consistent.

NASA’s Statement on Crew Health

NASA had previously denied the reports, emphasising that Williams and her fellow crew members, including NASA astronaut Butch Wilmore, are in good health. Williams and Wilmore, who arrived at the ISS on June 6 aboard Boeing’s Starliner capsule, were initially scheduled for a ten-day mission under the Crew Flight Test programme. Technical issues with Starliner’s thrusters led NASA to extend their stay on the ISS until early 2025, when they are expected to return with SpaceX’s Crew-9 mission astronauts.

Current ISS Crew Status

The current ISS team, led by Williams, includes three NASA astronauts and three Russian cosmonauts, all working collaboratively despite recent media scrutiny. Williams assured viewers that her health and morale remain robust as the crew carries out essential research and maintenance tasks on the orbiting laboratory showing NASA’s confidence in their well-being during extended missions.

Continue Reading

Science

Math reveals secrets to gaining height on a half-pipe

Published

on

By

Math reveals secrets to gaining height on a half-pipe

A recent study reveals how skateboarders can use mathematical insights to increase their speed and height on half-pipes. Florian Kogelbauer, a mathematician from ETH Zurich, and his research team have examined how specific movements impact a skateboarder’s performance on U-shaped ramps. By alternating between crouching and standing in certain areas, skaters can generate extra momentum, leading to higher jumps and faster speeds. This research, published in Physical Review Research, could lead to more efficient techniques for skaters aiming to improve their skills.

Modelling Momentum on Half-Pipes

The research was published in American Physical Society Journal. The technique of “pumping,” or alternating between crouching and standing, is essential for building speed on half-pipes. Kogelbauer’s team created a model to show how the body’s centre of mass affects movement on a ramp, much like the mechanics of a swing. In their calculations, they found that crouching while moving downhill and standing while moving uphill helps skaters gain height more effectively. This rhythm, the team suggests, could help skaters reach higher elevations on the ramp in fewer motions.

Testing the Theory with Real Skaters

To test the model’s validity, researchers observed two skateboarders as they navigated a half-pipe. They were asked to reach a specific height as quickly as possible. Video analysis revealed that the more experienced skater naturally followed the model’s suggested pattern, reaching the target height with fewer motions. The less experienced skater, who did not follow the pattern as precisely, required more time to reach the same height. This contrast suggests that experienced skaters intuitively apply these principles for better performance.

Broader Applications Beyond Skateboarding

According to Sorina Lupu, an engineer at the California Institute of Technology, this simplified model may also have applications in robotics. By demonstrating how minimal adjustments in body position can impact speed and height, this study offers insights that could make robotic movement more efficient. For engineers, this research indicates that straightforward models of human movement could be used to enhance robotic performance, providing an alternative to complex machine-learning models often used in robotics.

Continue Reading

Science

Global Fossil CO2 Emissions Hit Record in 2024

Published

on

By

Global Fossil CO2 Emissions Hit Record in 2024

Global carbon emissions from fossil fuel combustion have reached an unprecedented peak in 2024, with the Global Carbon Project reporting a projected 37.4 billion tonnes of fossil CO2 emissions, a 0.8% increase from 2023. The report underscores an urgent call for emissions reduction as the world’s annual output of CO2 from fossil fuels and land-use changes collectively approaches 41.6 billion tonnes. Despite increased efforts to mitigate climate impacts, there are no clear signs of a peak in global fossil CO2 emissions, heightening the risk of surpassing critical climate thresholds.

Sector-Specific Emissions and Regional Insights

As per a report by University of Exeter, emissions from fossil fuels, including coal, oil, and gas, are anticipated to rise in 2024, accounting for 41 percent, 32 percent, and 21 percent of fossil CO2 emissions, respectively. Coal emissions are expected to increase by 0.2 percent, oil by 0.9 percent, and natural gas by 2.4 percent. On a regional level, China, responsible for 32 percent of global emissions, is projected to see a slight increase of 0.2 percent, while emissions in the United States are expected to fall by 0.6 percent.

The European Union’s emissions are forecasted to decrease by 3.8 percent, whereas India, contributing 8 percent of global emissions, is projected to experience a 4.6 percent rise. Emissions from aviation and shipping sectors are also set to increase by 7.8 percent this year, though they remain below pre-pandemic levels.

Carbon Budget and Climate Warnings

According to Professor Pierre Friedlingstein from the University of Exeter, who led the study, the absence of a peak in fossil CO2 emissions further reduces the remaining carbon budget needed to keep warming below the Paris Agreement’s 1.5-degree Celsius target. At the current emission rate, a 50 percent probability exists of surpassing this threshold within the next six years. Meanwhile, Professor Corinne Le Quéré of the University of East Anglia acknowledged ongoing efforts in renewable energy deployment and reduced deforestation but stressed that substantial emissions reductions are still essential.

Urgency for Accelerated Action

The report emphasises that while some nations demonstrate progress in emissions reduction, these efforts have not been sufficient to reverse the overall global trend. Dr Glen Peters from the CICERO Center for International Climate Research noted that global climate action remains “a collective challenge,” with gradual declines in emissions in certain regions counterbalanced by increases elsewhere.

Continue Reading

Trending