Connect with us

Published

on

China’s third and final module docked with its permanent space station Tuesday to further a more than decade-long effort to maintain a constant crewed presence in orbit, as its competition with the US grows increasingly fierce.

The Mengtian module arrived at the Tiangong station early Tuesday morning, state broadcaster CCTV said, citing the China Manned Space agency.

Mengtian was blasted into space on Monday afternoon from the Wenchang Satellite Launch Center on the southern island province of Hainan. It was expected to take about 13 hours to complete the flight and docking mission.

A large crowd of amateur photographers, space enthusiasts, and others watched the lift-off from an adjoining beach.

Many waved Chinese flags and wore T-shirts emblazoned with the characters for China, reflecting the deep national pride invested in the space programme and the technological progress it represents.

“The space programme is a symbol of a major country and a boost to the modernisation of China’s national defense,” said Ni Lexiong, a professor at Shanghai University of Political Science and Law, underscoring the programme’s close military links.

“It is also a boost to the confidence of the Chinese people, igniting patriotism, and positive energy,” Ni said.

Mengtian, or “Celestial Dream,” joins Wentian as the second laboratory module for the station, collectively known as Tiangong, or “Celestial Palace.” Both are connected to the Tianhe core module where the crew lives and works.

Like its predecessors, Mengtian was launched aboard a Long March-5B carrier rocket, a member of China’s most powerful family of launch vehicles.

Tiangong is currently populated by a crew of two male and one female astronauts, according to the China Manned Space Agency.

Chen Dong, Cai Xuzhe and Liu Yang arrived in early June for a six-month stay on board, during which they will complete the station’s assembly, conduct space walks and carry out additional experiments.

Following Mengtian’s arrival, an additional uncrewed Tianzhou cargo craft is due to dock with the station next month, with another crewed mission scheduled for December, at which time crews may overlap as Tiangong has sufficient room to accommodate six astronauts.

Mengtian weighs in at about 23 tons, is 17.9 metres (58.7 feet) long and has a diameter of 4.2 metres (13.8 feet). It will provide space for science experiments in zero gravity, an airlock for exposure to the vacuum of space, and a small robotic arm to support extravehicular payloads.

The already orbiting 23-ton Wentian, or “quest for the heavens” laboratory is designed for science and biology experiments and is heavier than any other single-module spacecraft currently in space.

Next year, China plans to launch the Xuntian space telescope, which, while not a part of Tiangong, will orbit in sequence with the station and can dock occasionally with it for maintenance.

No other future additions to the space station have been publicly announced.

In all, the station will have about 110 cubic meters (3,880 cubic feet) of pressurised interior space, including the 32 cubic meters (1,130 cubic feet) added by Mengtian.

China’s crewed space programme is officially three decades old this year, with the Mengtian launch being its 25th mission. But it truly got underway in 2003, when China became only the third country after the US and Russia to put a human into space using its own resources.

The programme is run by the ruling Communist Party’s military wing, the People’s Liberation Army, and has proceeded methodically and almost entirely without outside support. The US excluded China from the International Space Station because of its programme’s military ties.

Despite that, China is collaborating with the European Space Agency on experiments aboard Mengtian, and is cooperating with France, Germany, Italy, Russia, Pakistan, and the UN Office for Outer Space Affairs (UNOOSA) on a range of projects from aerospace medicine to microgravity physics, according to the Chinese Academy of Sciences.

Prior to launching the Tianhe module, China’s Manned Space Program launched a pair of single-module stations that it crewed briefly as test platforms.

The permanent Chinese station will weigh about 66 tons — a fraction of the size of the International Space Station, which launched its first module in 1998 and weighs around 465 tons.

With a lifespan of 10 to 15 years, Tiangong could one day find itself the only space station still running, if the International Space Station adheres to its 30-year operating plan.

China has also chalked up successes with uncrewed missions, and its lunar exploration programme generated media buzz last year when its Yutu 2 rover sent back pictures of what was described by some as a “mystery hut” but was most likely only a rock. The rover is the first to be placed on the little-explored far side of the moon.

China’s Chang’e 5 probe returned lunar rocks to Earth for the first time since the 1970s in December 2000 and another Chinese rover is searching for evidence of life on Mars. Officials are also considering a crewed mission to the moon.

The programme has also drawn controversy. In October 2021, China’s Foreign Ministry brushed off a report that China had tested a hypersonic missile two months earlier, saying it had merely tested whether a new spacecraft could be reused.

China is also reportedly developing a highly secret space plane.

China’s space programme has proceeded cautiously and largely gone off without a hitch.

Complaints, however, have been leveled against China for allowing rocket stages to fall to Earth uncontrolled twice before. NASA accused Beijing last year of “failing to meet responsible standards regarding their space debris” after parts of a Chinese rocket landed in the Indian Ocean.

China’s increasing space capabilities also featured in the latest Pentagon defense strategy released Thursday.

“In addition to expanding its conventional forces, the PLA is rapidly advancing and integrating its space, counterspace, cyber, electronic, and informational warfare capabilities to support its holistic approach to joint warfare,” the strategy said.

The US and China are at odds on a range of issues, especially the self-governing island of Taiwan that Beijing threatens to annex with force. China responded to a September visit to Taiwan by US House Speaker Nancy Pelosi by firing missiles over the island, holding wargames and staging a simulated blockade.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

ESA Will Burn Up the DRACO Satellite in 2027 for This Reason

Published

on

By

ESA Will Burn Up the DRACO Satellite in 2027 for This Reason

The European Space Agency (ESA) is preparing to launch a unique satellite in 2027, designed specifically to study how satellites break apart upon reentry into Earth’s atmosphere. This mission, named DRACO (Destructive Reentry Assessment Container Object), will be an important step in ESA’s effort to develop technology that limits the creation of space debris. ESA has awarded the contract to Deimos, a European technology company, to build this spacecraft, which will provide invaluable data as it breaks apart during its reentry. This data will help scientists better understand satellite disintegration and its environmental impact.

Understanding Satellite Breakup

The goal of the DRACO mission is to collect data on how satellites disintegrate during reentry. By studying this, researchers aim to design future satellites that will fully burn up during reentry, reducing the risk of debris reaching the Earth’s surface. The mission will also examine how spacecraft reentry affects the atmosphere, including how different materials interact with it and what byproducts are produced.

Innovative DRACO Design

At 200 kilograms, DRACO will be about the size of a washing machine. Its design will allow it to break apart like a normal satellite, but a specially engineered capsule will survive reentry. This capsule, measuring 40 centimetres, will carry four cameras and 200 sensors to record crucial data during the breakup. After reentry, it will deploy a parachute and transmit the collected information before being lost at sea.

Advancing Zero Debris Technology

According to Holger Krag, ESA’s Head of Space Safety, the DRACO mission will play a key role in developing future satellite technology. The data it collects will be used to build more demisable satellites by 2030, aligning with ESA’s Zero Debris charter, which aims to stop the creation of space debris within this decade.

Tim Flohrer, head of ESA’s space debris office, also emphasised the mission’s importance in helping to advance zero-debris technologies, particularly as the number of satellite launches continues to increase worldwide.

Continue Reading

Science

NASA BioSentinel Studies Space Radiation During Massive Solar Storm Event

Published

on

By

NASA BioSentinel Studies Space Radiation During Massive Solar Storm Event

In May 2024, a remarkable geomagnetic storm, also known as solar storm, impacted Earth, resulting in vibrant auroras that captivated observers worldwide. These stunning natural displays occur when eruptions of solar plasma, known as coronal mass ejections, collide with Earth’s magnetic field. While these events are a visual delight, they also raise significant questions about the impact of solar radiation on humans travelling beyond Earth’s atmosphere.

Exploring Radiation Risks in Space

During this geomagnetic event, NASA’s BioSentinel spacecraft took the opportunity to gather crucial data on solar radiation. This research is vital as NASA  gears up for future missions to the Moon and Mars. As noted by Sergio Santa Maria, who leads the BioSentinel project at NASA’s Ames Research Center, the timing coincided with a solar maximum, which allowed for an in-depth examination of the radiation environment in space.

BioSentinel’s Unique Mission

BioSentinel, a compact satellite roughly the size of a cereal box, is situated over 30 million miles from Earth in a solar orbit. Unlike life on Earth, which is shielded by the planet’s magnetic field, BioSentinel had to endure the full effects of the solar storm. Initial data suggest that although the storm was considerable, it was only associated with a moderate increase in solar radiation, indicating that the immediate threats to life may not be as severe as previously anticipated.

Adaptation of Scientific Goals

Originally intended to study yeast in space, BioSentinel has shifted its focus to understanding the broader implications of deep space conditions. The spacecraft’s biosensor instruments continue to provide valuable insights into the radiation environment in space. Santa Maria pointed out that despite the completion of the biological aspect of the mission, BioSentinel still holds significant scientific relevance, demonstrating its capability for future long-duration missions.

Conclusion: The Importance of Ongoing Research

The spectacular auroras that light up the night sky serve as a reminder of the unseen forces governing our solar system. As NASA and its collaborators seek to deepen their understanding of space environments, the data collected by missions like BioSentinel is essential. This research not only enhances our knowledge of solar radiation but also informs the safety and success of future human explorations beyond Earth.

Continue Reading

Science

This Strange Fisht Can Taste Using Its Crab-Like Legs, Says Study

Published

on

By

This Strange Fisht Can Taste Using Its Crab-Like Legs, Says Study

The northern sea robin (Prionotus carolinus) is an intriguing marine species known for its remarkable adaptations. Unlike most fish, this species employs its six leg-like appendages to navigate the ocean floor. This ability allows it not only to move but also to explore the sea bed in search of food. While this capability was long known in the scientific community, another strange use case of its leg was recently discovered.

Sensory Capabilities of Sea Robins

Recent studies have illuminated how these legs function as sensory organs. Researchers observed that the northern sea robin is capable of detecting buried prey through chemical cues released into the water. Using its shovel-like feet, the fish can unearth hidden food sources, demonstrating a unique blend of mobility and sensory detection.

Research Collaboration and Findings

A collaborative research effort involving developmental biologist David Kingsley from Stanford University and molecular biologist Nicholas Bellono from Harvard University examined the sea robin’s sensory adaptations. The study was published in the journal Current Biology. Their experiments placed the fish in environments with buried mussels and amino-acid capsules. The results confirmed the fish’s efficiency in locating and retrieving these hidden items, thanks to the specialized bumps on its legs, known as papillae, which house taste receptors.

Evolutionary Insights into Adaptation

The evolutionary background of the northern sea robin reveals an intriguing narrative. An evolutionary analysis of various sea robin species indicated that while the legs initially developed for locomotion, their sensory capabilities evolved later. The researchers identified the tbx3a gene as a key factor in the development of these legs, and using CRISPR technology, they demonstrated that altering this gene can impact both leg formation and sensory function.

Conclusion: Implications of the Research

The findings from this research not only enhance our understanding of the northern sea robin but also provide broader insights into how species adapt over time. By exploring the genetic and evolutionary pathways that led to such unique adaptations, scientists can better understand the complexities of marine life and the evolutionary processes that shape it.

Continue Reading

Trending