Connect with us

Published

on

Cat Clifford, CNBC climate tech and innovation reporter, at Helion Energy on October 20.

Photo taken by Jessie Barton, communications for Helion Energy, with Cat Clifford’s camera.

On Thursday, October 20, I took a reporting trip to Everett, Wash., to visit Helion Energy, a fusion startup that has raised raised nearly $600 million from a slew of relatively well known Silicon Valley investors, including Peter Thiel and Sam Altman. It’s got another $1.7 billion in commitments if it hits certain performance targets.

Because nuclear fusion has the potential to make limitless quantities of clean energy without generating any long-lasting nuclear waste, it’s often called the “holy grail” of clean energy. The holy grail remains elusive, however, because recreating fusion on earth in a way that generates more energy that is required to ignite the reaction and can be sustained for an extended period of time has so far remained unattainable. If we could only manage to commercialize fusion here on earth and at scale, all our energy woes would be solved, fusion proponents say. 

Fusion has also been on the horizon for decades, just out of reach, seemingly firmly entrenched in a techno-utopia that exists only in science fiction fantasy novels.

David Kirtley (left), a co-founder and the CEO at Helion, and Chris Pihl, a co-founder and the chief technology officer at Helion.

Photo courtesy Cat Clifford, CNBC.

But visiting Helion Energy’s enormous workspace and lab pulled the idea of fusion out of the completely fantastical and into the potentially real for me. Of course, “potentially real” doesn’t mean that fusion will be a commercially viable energy source powering your home and my computer next year. But it no longer feels like flying a spaceship to Pluto.

As I walked through the massive Helion Energy buildings in Everett, one fully operational and one still under construction, I was struck by how workaday everything looked. Construction equipment, machinery, power cords, workbenches, and countless spaceship-looking component parts are everywhere. Plans are being executed. Wildly foreign-looking machines are being constructed and tested.

The Helion Energy building under construction to house their next generation fusion machine. The smokey atmosphere is visible.

Photo courtesy Cat Clifford, CNBC.

For the employees of Helion Energy, building a fusion device is their job. Going to the office every day means putting part A into Part B and into part C, fiddling with those parts, testing them, and then putting them with more parts, testing those, taking those parts apart maybe when something doesn’t work right, and then putting it back together again until it does. And then moving to Part D and Part E.

The date of my visit is relevant to this story, too, because it added a second layer of strange-becomes-real to my reporting trip. 

On October 20, the Seattle Everett region was blanketed in dangerous levels of wildfire smoke. The air quality index for Everett was 254, making it the worst air quality in the world at that time, according to IQAir.

Helion Energy’s building under construction to house the seventh generation fusion machine on a day when wildfire smoke was not restricting visibility.

Photo courtesy Helion Energy

“Several wildfires burning in the north Cascades were fueled by warm, dry, and windy weather conditions. Easterly winds flared the fires as well as drove the resulting smoke westwards towards Everett and the Seattle region,” Christi Chester Schroeder, the Air Quality Science Manager at IQAir North America, told me.

Global warming is helping to fuel those fires, Denise L. Mauzerall, a professor of environmental engineering and international affairs at Princeton, told me.

“Climate change has contributed to the high temperatures and dry conditions that have prevailed in the Pacific Northwest this year,” Mauzerall said. “These weather conditions, exacerbated by climate change, have increased the likelihood and severity of the fires which are responsible for the extremely poor air quality.”

It was so bad that Helion had told all of its employees to stay home for the first time ever. Management deemed it too dangerous to ask them to leave their houses.

The circumstances of my visit set up an uncomfortable battle. On the one hand, I had a newfound sense of hope about the possibility of fusion energy. At same time, I was wrestling internally with a deep sense of dread about the state of the world.

I wasn’t alone in feeling the weight of the moment. “It is very unusual,” Chris Pihl, a co-founder and the chief technology officer at Helion, said about the smoke.

Pihl has worked on fusion for nearly two decades now. He’s seen it evolve from the realm of physicist academics to a field followed closely by reporters and collecting billions in investments. People working on fusion have become the cool kids, the underdog heroes. As we collectively blow past any realistic hope of staying within the targeted 1.5 degrees of warming and as global energy demand continues to rise, fusion is the home run that sometimes feels like the only solution.

“It’s less of a academic pursuit, an  altruistic pursuit, and it’s turning into more of a survival game at this point I think, with the way things are going,” Pihl told me, as we sat in the empty Helion offices looking out at a wall of gray smoke. “So it’s necessary. And I am glad it is getting attention.”

How Helion’s technology works

CEO and co-founder David Kirtley walked me around the vast lab space where Helion is working on constructing components for its seventh-generation system, Polaris. Each generation has proven out some combination of the physics and engineering that is needed to bring Helion’s specific approach to fusion to fruition. The sixth-generation prototype, Trenta, was completed in 2020 and proved able to reach 100 million degrees Celsius, a key milestone for proving out Helion’s approach.

Polaris is meant to prove, among other things, that it can achieve net electricity — that is, to generate more than it consumes — and it’s already begun designing its eighth generation system, which will be its first commercial grade system. The goal is to demonstrate Helion can make electricity from fusion by 2024 and to have power on the grid by the end of the decade, Kirtley told me.

Cat Clifford, CNBC climate tech and innovation reporter, at Helion Energy on October 20. Polaris, Helion’s seventh prototype, will be housed here.

Photo taken by Jessie Barton, communications for Helion Energy, with Cat Clifford’s camera.

Some of the feasibility of getting fusion energy to the electricity grid in the United States depends on factors Helion can’t control — establishing regulatory processes with the Nuclear Regulatory Commission, and licensing processes to get required grid interconnect approvals, a process which Kirtley has been told can range from a few years to as much as ten years. Because there are so many regulatory hurdles necessary to get fusion hooked into the grid, Kirtley said he expects their first paying customers are likely to be private customers, like technology companies that have power hungry data centers, for example. Working with utility companies will take longer.

One part of the Polaris system that looks perhaps the most otherworldly for a non fusion expert (like me) the Polaris Injector Test, which is how the fuel for the fusion reactor will get into the device.

Arguably the best-known fusion method involves a tokamak, a donut-shaped device that uses super powerful magnets to hold the plasma where the fusion reaction can occur. An international collaborative fusion project, called ITER (“the way” in Latin), is building a massive tokamak in Southern France to prove the viability of fusion.

Helion is not building a tokamak. It is building a long narrow device called a Field Reversed Configuration, or FRC, and the next version will be about 60 feet long.

The fuel is injected in short tiny bursts at both ends of the device and an electric current flowing in a loop confines the plasma. The magnets fire sequentially in pulses, sending the plasmas at both ends shooting towards each other at a velocity greater than one million miles per hour. The plasmas smash into each other in the central fusion chamber where they merge to become a superhot dense plasma that reaches 100 million degrees Celsius. This is where fusion occurs, generating new energy. The magnetic coils that facilitate the plasma compression also recover the energy that is generated. Some of that energy is recycled and used to recharge the capacitors that originally powered the reaction. The additional extra energy is electricity that can be used.  

This is the Polaris Injector Test, where Helion Energy is building a component piece of the seventh generation fusion machine. There will be one of these on each side of the fusion device and this is where the fuel will get into the machine.

Photo courtesy Cat Clifford, CNBC.

Kirtley compares the pulsing of their fusion machine to a piston.

“You compress your fuel, it burns very hot and very intensely, but only for a little bit. And the amount of heat released in that little pulse is more than a large bonfire that’s on all the time,” he told me. “And because it’s a pulse, because it’s just one little high intensity pulse, you can make those engines much more compact, much smaller,” which is important for keeping costs down.

The idea is actually not new. It was theorized in the 1950s and 60s, Kirtley said. But it was not possible to execute until modern transistors and semiconductors were developed. Both Pihl and Kirtley looked at fusion earlier in their careers and weren’t convinced it was economically viable until they came to this FRC design. 

Another moat to cross: This design does use a fuel that is very rare. The fuel for Helion’s approach is deuterium, an isotope of hydrogen that is fairly easy to find, and helium three, which is a very rare type of helium with one extra neutron.

“We used to have to say that you had to go into outer space to get helium three because it was so rare,” Kritley said. To enable their fusion machine to be scaled up, Helion is also developing a way to make helium three with fusion.

A dose of hope

There is no question that Helion has a lot of steps and processes and regulatory hurdles before it can bring unlimited clean energy to the world, as it aims to do. But the way it feels to walk around an enormous wide-open lab facility — with some of the largest ceiling fans I have ever seen — it seems possible in a way that I hadn’t ever felt before. Walking back out into the smoke that day, I was so grateful to have that dose of hope.

But most people were not touring the Helion Energy lab on that day. Most people were sitting stuck inside, or putting themselves at risk outside, unable to see the horizon, unable to see a future where building a fusion machine is a job that is being executed like a mechanic working in a garage. I asked Kirtley about the battling feeling I had of despair at the smoke and hope at the fusion parts being assembled.

“The cognitive dissonance of sometimes what we see out in the world, and what we get to build here is pretty extreme,” Kirtley said.

“Twenty years ago, we were less optimistic about fusion.” But now, his eyes glow as he walks me around the lab. “I get very excited. I get very — you can tell — I get very energized.”

Other young scientists are also excited about fusion too. At the beginning of the week when I visited, Kirtley was at the American Physics Society Department of Plasma Physics conference giving a talk.

“At the end of my talk, I walked out and there were 30 or 40 people that came with me, and in the hallway, we just talked for an hour and a half about the industry,” he said. “The excitement was huge. And a lot of it was with younger engineers and scientists that are either grad students or postdocs, or in the first 10 years of their career, that are really excited about what private industry is doing.”

The race is on to replicate the power of the sun with fusion energy

Continue Reading

Environment

Tesla’s new Roadster patent doesn’t do what Elon said it would (and that’s good)

Published

on

By

Tesla's new Roadster patent doesn't do what Elon said it would (and that's good)

Tesla filed for a patent which looks like it could be the promised “SpaceX package” which it will supposedly include on its oft-delayed next-gen Roadster. But will the system let the Roadster “fly,” as CEO Elon Musk has promised?

In 2017, at Tesla’s Semi unveiling, Tesla pulled one of its few-ever Jobsian “one more thing”s and unveiled the next-gen Tesla Roadster, which caught everyone by surprise.

The idea, at the time, was for the Roadster to provide a “hard-core smack down to gasoline powered cars,” and our speculative technical analysis of the announced specs suggested that this could certainly be the case. The car was slated for a 2020 release.

However, 8 years later, you may have noticed that you have not seen a next-gen Tesla Roadster on the road yet. So we will have to wait to see if all those promised statistics will bear out, or if it’s all just smoke and mirrors.

Advertisement – scroll for more content

Other than a few spottings of Franz von Holzhausen taking the Roadster prototype out in public or a model parked at the Petersen museum, all we’ve ever heard about the car is that it’s “in development” or “close to finalized“, over and over and over again. Heck, even Tesla seems to forget about it sometimes.

But today, we got the first positive verification of progress on a probable Tesla Roadster performance improvement that we’ve seen in a long time – or maybe ever.

It comes in the form of a patent filed with the US patent office which seems to show something somewhat similar to the “SpaceX package” that CEO Elon Musk has referred to repeatedly, claiming that the car will use “cold gas thrusters” to “fly.”

How Musk described Tesla’s “SpaceX package”

The point of the SpaceX package was always to add additional performance that is not attainable by traction alone.

Currently, a lot of electric cars have so much torque that they are “traction-limited,” which is to say, their tires cannot possibly accelerate them in any direction any faster than they currently do. You can add more power or bigger brakes, but it doesn’t matter, the limiting factor is the tires (and the weight…).

So you have to find other creative ways to get more performance. Lots of cars do this with aerodynamic surfaces like wings/spoilers to add downforce, which pushes the car to the ground so the tires can work a little harder. But there are limits to how much downforce you can add, and what speeds it works at.

This is where the SpaceX package would come in – it would presumably add additional thrust in a given direction, adding acceleration in whichever direction you choose.

The way that Musk has described it in the past, using “cold gas thrusters,” made it seem like there would be thrusters strategically placed around the vehicle to provide either forward or lateral acceleration, or deceleration in order to help the car stop.

However, Musk also described the car as being able to “fly,” which makes no sense whatsoever.

As mentioned above, downforce is an effective way to get more performance out of a vehicle when you are otherwise traction-limited. But flying would take upforce, not downforce, and that’s not a term anyone uses because it’s totally useless for any performance benefit and there’s absolutely no reason anyone would ever want to do that to a car – unless you’re trying to play a trick on Mark Webber or something.

(Yes, I’m aware of the jumping Yangwang U9. That’s a demo of active suspension, which does add performance benefit, and using that system to “jump” doesn’t add any unnecessary weight or complexity to the active suspension system, unlike downward-pointed thrusters which would be wholly unnecessary beyond providing a demo).

Thankfully, someone who knows how physics works showed up and reason has prevailed, and it looks like the system, as proposed, doesn’t do any of that nonsense Elon Musk was talking about. Instead, it does what it should have done all along – it acts as a “fan car,” a concept that has existed in automotive circles since the early 1970s.

Tesla’s actual patent shows old “fan car” tech, with a twist

There have been several “fan cars” or “ground effect cars” in the past, which operate with powerful fans to blow air out from underneath the vehicle, combined with side skirts underneath the car to reduce the amount of air that can replace it. This creates a low-pressure vacuum effect, and “sucks” the car to the ground (more accurately, ambient air pressure from above pushes the car to the ground, physics teachers please do not email me about how nothing sucks in physics).

Tesla’s patent shows a design that looks very similar to concepts that we’ve seen before in the automotive realm, but with some new tech applied. Have a look:

It has the fans and the side skirts, just as one would expect. And it shows the rough design of what the system might look like – a hexagonal-ish shape underneath the vehicle, with fans presumably at the rear of the vehicle to exhaust air to create the vacuum effect.

Tesla goes on to say that these skirts and fans could be controlled automatically by vehicle systems in order to offer different performance benefits in different situations. This is where we start to see the new tech – like adding the modern concept of active aerodynamics to the concept of fan cars.

Rather than deploying the skirts the same way in all modes, there could be different modes for a prepared track surface which is known to be high quality and flat, or for a more uneven road surface where you might not be able to create as secure of a seal with the maximum-downforce configuration.

This is an issue with fan cars – they only work on the right kind of surface. If air leaks in to the vacuum region under the vehicle, you can’t really create as much negative pressure as you’d like. That’s why the side skirts are necessary, but of course that doesn’t work if there are potholes, unsecured manhole covers, and the like.

Tesla also says the system could have different configurations for low- and high-speed operations, adjust the skirts based on vehicle weight transfer, or potentially detect upcoming road conditions and modify configuration based on what the car sees ahead. And mention of deploying the skirts based on GPS position lends itself to the idea that Tesla could create specific settings to optimize performance for track use, or even individual corners on tracks.

Is this the “SpaceX Package,”or something else?

Tesla has said for years that the Roadster would have a “SpaceX package” to increase the performance even further than the specs it mentioned in the original unveiling event. This was meant to use expertise from SpaceX, another company Musk runs, and whose primary facility is sited on the same Hawthorne, CA property as Tesla’s Design Studio.

At least one of the designers listed on Tesla’s “fan car” patent, David Lemire, worked at both Tesla and SpaceX in the past, before leaving and then returning to Tesla as a senior engineer on Tesla’s “new programs” team.

However, there is no mention in the document of “fly,” “flight,” “thruster,” “rocket” or “lift.” Nothing like the “cold gas thrusters” package that Musk has spent years telling us will make the car fly – and in fact, the exact opposite, as this will suck the car to the ground, not make it fly at all.

This could mean that Tesla has another idea in mind which will use thrusters, and will be applied in addition to this “fan car” idea.

Theoretically, adding lateral thrusters around the car could still add a performance benefit over and above the fan car idea, so these could be used in tandem, though it would add a lot of complexity to the vehicle. But these may or may not be worth the added weight – and they definitely wouldn’t be worth the weight if they’re directed in such a way to make the car able to “fly.”

Or it could be that the “fan car” patent will be applied to cars like the Model S Plaid, which has set racing records, and Tesla has another trick up its sleeve for the Roadster.

Or… this is what the SpaceX package was all along, and Musk was just running his mouth about the car flying. Which would be the best option, to be honest, because it’s dumb to pretend that flight would add any performance benefits to a sportscar.

Regardless, the fan car idea is an actual interesting performance idea, and it would actually work, unlike some of the previous public statements made by Tesla’s CEO. So it’s nice to see some sort of progress that could be applied to a performance car, after so many years of waiting.

But… does it matter anymore?

With so many performance EVs, does this matter?

The problem is that in the intervening 8 years since the Roadster was first introduced, some other electric cars with truly wild specs have already hit the road, and have delivered the “hard core smack down” that Tesla promised.

We’ve got the Rimac Nevera R, a 2,078hp electric car that can hit 300km/h (186mph) a full 3.5 seconds faster than a Bugatti Chiron Super Sport. We’ve got the Lotus Evija X, which set the third-fastest Nurburgring lap ever, only beaten by two one-off, track-only, purpose-built racecars (one of which is a hybrid, the other is electric).

And in the realm of actual consumer-available vehicles, we have the Xiaomi SU7 Ultra – made by a smartphone company, mind you – with 1,548hp and record-setting performance of its own.

So anybody who tells you these days that EVs aren’t fast is just… embarrassingly wrong. They’ve had their head in the sand for at least 19 years. It’s honestly a bit boring at this point.

So, what’s left for Tesla to do? The smack down has been delivered, and delivered by many other companies, startups and otherwise. I mean, heck, we’ve got a company that went from making phones to beating Porsche on its home track in the course of less than three years worth of development. Everyone is aware of how easy it is to beat complex, inefficient gas engines at this point.

A fan car seems like it could be a worthy addition to this menagerie, another way to deliver the smack down, as none of the above EVs have leveraged this particular type of active aerodynamics for a performance benefit, so Tesla could have something unique here….. oh, wait.

It turns out that someone else has done an electric fan car already. The McMurtry Spierling already has this idea, and it’s an absolute beast. It’s already the fastest car ever at Goodwood thanks to the 2,000kg of downforce that it makes with the huge fans underneath the roughly 1,000kg vehicle, even at 0mph where traditional aerodynamic surfaces provide no benefit whatsoever.

And if it seems interesting that one of those numbers is bigger than the other, well, yes, McMurtry has done that too – it briefly drove the car upside down just to show off how much downforce its fans can make, which we would say might qualify as “the most epic demo ever.”

That said, the Spierling is just one application of the idea, and it’s not like more cars can’t try something similar.

Also, it looks like Tesla’s solution would add a lot of adaptibility that McMurtry’s doesn’t have. Not only is the Spierling a purpose-built, track-focused single-seat racecar whereas the Roadster would be a regular roadgoing sportscar, but also Tesla’s flexible solution described in the patent would allow travel on less track-prepped terrain.

This would make the concept of a fan car much more practical for real life – as long as you’re not somewhere where you wouldn’t want to spray high-velocity pebbles out of the back of your vehicle. Maybe there’s a reason nobody has done this on a consumer vehicle yet (that said, Tesla includes a filter to stop the spray of dust and pebbles in the patent).

But in terms of real-life applications, there is also the consideration of driver skill. Drivers of performance vehicles get used to their car’s limits and learn where those limits are. But with a presumably enormous amount of adjustable downforce, those limits could change drastically based on road conditions.

We could see this being a dangerous situation if drivers think they’re in max-downforce mode but aren’t, and suddenly find mid-turn that the car is a lot less capable than they thought it was. So we’ll have to see if this mode is track-only or what.

For now, the main question is whether Tesla will ever make this thing, given that it’s already five years late. Any takers?


The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OpenAI in talks with investors about share sale at $500 billion valuation

Published

on

By

OpenAI in talks with investors about share sale at 0 billion valuation

Sam Altman, CEO of OpenAI attends the annual Allen and Co. Sun Valley Media and Technology Conference at the Sun Valley Resort in Sun Valley, Idaho, U.S., on July 8, 2025.

David A. Grogan | CNBC

OpenAI is in talks with investors about a potential stock sale at a valuation of roughly $500 billion, according to two sources with knowledge of the matter.

The talks are in early stages and would involve a secondary sale with shares sold by current and former employees, said the people, who asked not to be named because the discussions are confidential. Thrive Capital, an investor in OpenAI, could lead the potential round, the sources said.

Bloomberg was first to report on the latest talks.

OpenAI’s valuation has been on a continuous upswing since the artificial intelligence startup launched ChatGPT in late 2022 and quickly established itself as the leader in generative AI. The company announced a $40 billion funding round in March at a $300 billion, by far the largest amount ever raised by a private tech company.

Last week, OpenAI announced its most recent $8.3 billion tranche tied to that funding round.

OpenAI released two open-weight language models on Tuesday for the first time since it rolled out GPT-2 in 2019. The models aim to serve as lower-cost options that developers and researchers can easily run and customize, OpenAI said.

The company said earlier this week that ChatGPT was about to hit 700 million weekly active users.

OpenAI rival Anthropic, meanwhile, is in talks to secure between $3 billion and $5 billion in new funding led by Iconiq Capital at a potential $170 billion valuation, up from $61.5 billion in March.

CNBC previously reported that OpenAI’s annual recurring revenue is projected to top $20 billion by year-end, up from $10 billion in June.

WATCH: OpenAI releases two new open-weight AI models

OpenAI releases two new open-weight AI models

Continue Reading

Environment

Chevy Bolt EUV goes full Boat Mode in Texas floodwaters [video]

Published

on

By

Chevy Bolt EUV goes full Boat Mode in Texas floodwaters [video]

Electric cars don’t have intakes and exhausts, so they can’t get hydrolocked in deep water the way ICE-powered cars can – but that doesn’t make them amphibious. Nobody told this Texan Chevy Bolt EUV owner that, and when they got caught on the wrong side of the floodwaters, they licked the stamp and sent it!

The recent catastrophic flooding in Texas has brought unimaginable tragedies and hardships to thousands of people who unquestionably deserve better, and living through something like that can lead people to make some rash decisions (I made it through the aftermaths of Hurricanes Andrew and Katrina, AMA). Rash decisions like pulling up to a tunnel flooded in nearly three feet of water, and deciding to stand on the gas.

Think I’m exaggerating? Watch this Chevy Bolt EUV go full “Boat Mode” as its driver decides that dealing with whatever unseen obstacle or deadly live wires concealed by the floodwaters are less annoying than having to find an alternative route for yourself.

Submerging an EV that wasn’t designed for it (or even a Cybertruck, which allegedly was), isn’t exactly advisable. In addition to the underwater threats, submerging the skateboard in water could damage sensitive electrical connectors, compromise battery seals, and cause shorts in circuit boards over time.

Advertisement – scroll for more content

“Even more critically, water ingress into high-voltage systems can pose serious safety risks, including electrical faults or, in rare cases, thermal events,” writes Jonathan Lopez, over at GM Authority. “Although the Bolt EUV in this instance completed its soggy journey successfully, long-term effects may still emerge.”

In other words: don’t try this at home.

Electrek’s Take


Chevy Bolt EUV, via GM.

Like, don’t try this at home … but it’s pretty awesome.

SOURCE | IMAGES: stormchaserhtx, via GM Authority.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending