Connect with us

Published

on

The last total lunar eclipse of the year is set to take place on Tuesday, when the Earth blocks the Sun’s rays from reaching the Moon. Also known as the Blood Moon, the lunar eclipse will take place almost a year after the last total lunar eclipse, and viewers in North America, Central America, most of South America, the Pacific Ocean, Australia, New Zealand, and Asia will see the Moon darken and acquire a reddish hue on Tuesday. This will be the last total lunar eclipse until March 14, 2025.

How to watch the lunar eclipse

The Moon will traverse the northern half of Earth’s shadow, with totality predicted to last 86 minutes. Mid-eclipse happens on November 8th at 10:59 Universal Time (UT) or 4:29pm IST, around six days before apogee, when the Moon is farthest from Earth in its orbit. The actual clock times of the eclipse depend on your time zone.

You don’t need any equipment to observe a Blood Moon, but binoculars or a telescope can help enhance the view and the red colour of Earth’s only natural satellite.

You can also watch the lunar eclipse from the video embedded below

What to expect from the lunar eclipse

As a result, during the eclipse, the Moon will appear 7 percent smaller than it does when it’s at perigee (closest to Earth), but the difference is imperceptible. The eclipse on Tuesday will be a bit brighter than the one that occurred in May — especially in the Moon’s northern half — since the Moon doesn’t glide as close to the dark center of Earth’s shadow.

There are several delightful extras viewers can look out for while admiring the eclipse. During totality, Earth’s shadow dims the Moon sufficiently for stars to be visible right up to its edge. In addition, Uranus reaches opposition just a day after the eclipse, when it’s directly opposite the Earth from the Sun and at its closest and brightest.

And on eclipse night the distant planet will be upper left of the red-hued Moon — binoculars will reveal the planet’s pale disk. The farther west you are, the smaller the gap between planet and Moon. Also, the Northern and Southern Taurid meteor showers peak around this time, so eclipse-watchers might be treated to a few meteors streaking across the night sky.

All stages of the eclipse occur simultaneously for everyone, but not everyone will see the full eclipse. Weather permitting, observers in western North America will witness the entirety of the event on the morning of November 8, with the partial eclipse phase beginning an hour or so after midnight. In Hawai’i, the eclipsed Moon will be directly overhead. Viewers in the central parts of the continent will see all of totality and most of the final partial phases, while those on the East Coast can watch the Sun rise as totality ends.

South America will witness the initial phases of the eclipse up to totality, while Central America can enjoy the show a bit longer and see it through the total phase. The eclipse is an early evening event in central and eastern Asia, Australia, and New Zealand, and the Moon rises either during the earlier partial phases or during totality.

What to observe during the lunar eclipse.

The Moon’s leading edge enters the pale outer fringe of Earth’s shadow: the penumbra. You are unlikely to notice anything until the Moon is about halfway across the penumbra.

  1. Watch for a slight darkening on the Moon’s left side as seen from North America. The penumbral shading becomes stronger as the Moon moves deeper in.
  2. The penumbra is the region where an astronaut standing on the Moon would see Earth covering only part of the Sun’s disc.
  3. The Moon’s leading edge enters the umbra, the cone of Earth’s shadow within which the Sun’s completely hidden. You should notice a dramatic darkening on the leading edge of the lunar disk. With a telescope, you can watch the edge of the umbra slowly engulfing one lunar feature after another, as the entire sky begins to grow darker.
  4. The trailing edge of the Moon slips into the umbra for the beginning of total eclipse. But the Moon won’t black out completely: It’s sure to glow some shade of intense orange or red.
  5. Why is this? The Earth’s atmosphere scatters and bends (refracts) sunlight that skims its edges, diverting some of it onto the eclipsed Moon. If you were on the Moon during a lunar eclipse, you’d see the Sun hidden by a dark Earth rimmed with the reddish light of all the sunrises and sunsets ringing the world at that moment.
  6. The red umbral glow can be quite different from one eclipse to the next. Two main factors affect its brightness and hue. The first is simply how deeply the Moon goes into the umbra as it passes through; the center of the umbra is darker than its edges. The other factor is the state of Earth’s atmosphere. If a major volcanic eruption has recently polluted the stratosphere with thin global haze, a lunar eclipse can be dark red, ashen brown, or occasionally almost black.
  7. In addition, blue light is refracted through Earth’s clear, ozone-rich upper atmosphere above the thicker layers that produce the red sunrise-sunset colors. This ozone-blue light tints the Moon also, especially near the umbra’s edge. You’ll need binoculars or a telescope to see this effect.
  8. As the Moon progresses along its orbit, events replay in reverse order. The Moon’s edge re-emerges into the sunlight, ending totality and beginning a partial eclipse again.
  9. When all of the Moon escapes the umbra, only the last, penumbral shading is left. Sometime later, nothing unusual remains.

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Lake Mendota’s Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Published

on

By

Lake Mendota's Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Seasonal variations in Lake Mendota in Wisconsin, US, appear to drive rapid evolutionary changes in bacterial species, as revealed through a long-term genetic study. Bacteria within the lake adapt to changing environmental conditions, with species undergoing significant genetic shifts over time. Despite these changes, many bacteria return to nearly identical genetic states each year, creating a cyclical pattern of evolution. The findings shed light on how microbial life responds to seasonal pressures, offering insights into broader ecological and evolutionary processes.

Bacterial Evolution Observed Over Decades

According to a study published in the Nature Microbiology journal, bacterial populations in Lake Mendota adapt to environmental shifts caused by the lake’s seasonal changes. Researchers examined genetic material from a unique archive of 471 water samples collected over 20 years.

Each year, bacteria responded to varying conditions, such as algae blooms in summer and ice cover in winter. Strains within species competed based on their adaptability to specific conditions, leading to a repeated cycle of genetic change.

Impact of Extreme Weather Events

Unusual weather in 2012 provided additional insights into bacterial evolution. During that year, early ice melt, hotter temperatures, and reduced algae levels resulted in significant genetic changes in bacterial communities. Research revealed a notable shift in genes related to nitrogen metabolism among several species, indicating long-term genetic adaptations to these atypical conditions.

Implications for Climate Change

Robin Rohwer, a researcher at the University of Texas at Austin, told Phys.org that climate change may intensify such evolutionary responses, as extreme weather events become more frequent. These findings highlight the adaptability of microbial ecosystems to both gradual and abrupt environmental changes.

Advanced Techniques Unlock New Discoveries

The study, led by Rohwer and supported by computational resources at the Texas Advanced Computing Center, reconstructed bacterial genomes from fragmented DNA samples. With over 30,000 genomes analysed, this research represents one of the most extensive investigations into microbial evolution in a natural setting, offering valuable data for future studies.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


First-Ever Female Burial with Weapons, Believed to Be a Warrior, Discovered in Hungary

Continue Reading

Science

First-Ever Female Burial With Weapons Uncovered in Hungary

Published

on

By

First-Ever Female Burial With Weapons Uncovered in Hungary

The first confirmed case of a female burial with weapons from the 10th century in the Carpathian Basin, Hungary, has been uncovered. Skeletal remains and grave goods, including weaponry, were identified at the Sárrétudvari-Hízóföld cemetery. This discovery, described by experts, challenges prior assumptions about societal roles during the Hungarian Conquest period, a time marked by mounted archers and frequent conflicts. Although evidence of weapons was present, researchers approached conclusions cautiously, ensuring findings were grounded in detailed analysis.

Archaeological Findings and Methodology

The study was led by Dr. Balázs Tihanyi and his colleagues, published in PLOS ONE. As reported by Phys.org, the burial contained a silver penannular hair ring, bell buttons, a bead necklace, and archery-related items such as an arrowhead, quiver parts, and an antler bow plate. Genetic and morphological tests confirmed the individual, referred to as SH-63, was female, despite the poor preservation of skeletal remains.

Dr. Balázs Tihanyi, leader of the research team, told the publication that the combination of grave goods in SH-63’s burial was unique within the cemetery, blending typically male and female items.

Challenges in Determining Warrior Status

The presence of weapons did not lead to assumptions about SH-63’s status as a warrior. Researchers noted that being part of a warrior class involved specific societal roles, and physical evidence alone is insufficient for confirmation.

Indicators such as joint changes and trauma were identified, possibly suggesting activities like horse riding or weapon use. However, it was emphasised that these signs could also result from daily life unrelated to warfare.

Historical Implications

It was reported that this discovery provides a glimpse into the complexity of life in 10th-century Hungary, with SH-63’s burial raising questions about gender roles and social structures of the time. Further investigations are planned to compare this case with others from the same period, aiming to deepen understanding of the era’s societal dynamics.

Continue Reading

Science

JUNO Neutrino Detector Nears Completion, Set to Begin Operations in 2025

Published

on

By

JUNO Neutrino Detector Nears Completion, Set to Begin Operations in 2025

Physicists are finalising the Jiangmen Underground Neutrino Observatory (JUNO), a facility designed to unravel the mysteries surrounding neutrinos, subatomic particles with no electric charge and minimal mass. Scheduled to commence data collection in summer 2025, the observatory aims to identify the heaviest among the three neutrino types. Situated 700 metres beneath the ground in China, the project represents a significant step in the study of these elusive particles and their antiparticle counterparts, antineutrinos.

Key Features of the JUNO Detector

According to a Science News report, the observatory features a 35-metre-wide acrylic sphere at its core, which will hold 20,000 metric tons of liquid scintillator. This liquid is engineered to emit light when particles from an antineutrino interaction are detected. The setup includes tens of thousands of photomultiplier tubes to capture these light signals. To minimise interference from other particles, the detector is surrounded by a water-filled cylindrical pit, the filling of which began on December 18, 2024.

Focus on Antineutrinos

Antineutrinos from two nuclear power plants located 50 kilometres away will be observed, offering insights into their properties and interactions. According to project sources, this experimental setup will not only aid in determining neutrino masses but also contribute to broader physics research, including the understanding of matter-antimatter asymmetry.

Significance of JUNO

Reports indicate that this observatory will be the largest of its kind globally, with scientists expecting groundbreaking findings. By investigating antineutrinos in detail, JUNO is anticipated to enhance understanding of subatomic physics and the fundamental structure of the universe.

The collaborative efforts of international teams underscore the importance of the project in advancing neutrino research. This facility marks a major advancement in the quest to uncover the properties of neutrinos, with its findings expected to have far-reaching implications in the field of particle physics.

Continue Reading

Trending