Connect with us

Published

on

The last total lunar eclipse of the year is set to take place on Tuesday, when the Earth blocks the Sun’s rays from reaching the Moon. Also known as the Blood Moon, the lunar eclipse will take place almost a year after the last total lunar eclipse, and viewers in North America, Central America, most of South America, the Pacific Ocean, Australia, New Zealand, and Asia will see the Moon darken and acquire a reddish hue on Tuesday. This will be the last total lunar eclipse until March 14, 2025.

How to watch the lunar eclipse

The Moon will traverse the northern half of Earth’s shadow, with totality predicted to last 86 minutes. Mid-eclipse happens on November 8th at 10:59 Universal Time (UT) or 4:29pm IST, around six days before apogee, when the Moon is farthest from Earth in its orbit. The actual clock times of the eclipse depend on your time zone.

You don’t need any equipment to observe a Blood Moon, but binoculars or a telescope can help enhance the view and the red colour of Earth’s only natural satellite.

You can also watch the lunar eclipse from the video embedded below

What to expect from the lunar eclipse

As a result, during the eclipse, the Moon will appear 7 percent smaller than it does when it’s at perigee (closest to Earth), but the difference is imperceptible. The eclipse on Tuesday will be a bit brighter than the one that occurred in May — especially in the Moon’s northern half — since the Moon doesn’t glide as close to the dark center of Earth’s shadow.

There are several delightful extras viewers can look out for while admiring the eclipse. During totality, Earth’s shadow dims the Moon sufficiently for stars to be visible right up to its edge. In addition, Uranus reaches opposition just a day after the eclipse, when it’s directly opposite the Earth from the Sun and at its closest and brightest.

And on eclipse night the distant planet will be upper left of the red-hued Moon — binoculars will reveal the planet’s pale disk. The farther west you are, the smaller the gap between planet and Moon. Also, the Northern and Southern Taurid meteor showers peak around this time, so eclipse-watchers might be treated to a few meteors streaking across the night sky.

All stages of the eclipse occur simultaneously for everyone, but not everyone will see the full eclipse. Weather permitting, observers in western North America will witness the entirety of the event on the morning of November 8, with the partial eclipse phase beginning an hour or so after midnight. In Hawai’i, the eclipsed Moon will be directly overhead. Viewers in the central parts of the continent will see all of totality and most of the final partial phases, while those on the East Coast can watch the Sun rise as totality ends.

South America will witness the initial phases of the eclipse up to totality, while Central America can enjoy the show a bit longer and see it through the total phase. The eclipse is an early evening event in central and eastern Asia, Australia, and New Zealand, and the Moon rises either during the earlier partial phases or during totality.

What to observe during the lunar eclipse.

The Moon’s leading edge enters the pale outer fringe of Earth’s shadow: the penumbra. You are unlikely to notice anything until the Moon is about halfway across the penumbra.

  1. Watch for a slight darkening on the Moon’s left side as seen from North America. The penumbral shading becomes stronger as the Moon moves deeper in.
  2. The penumbra is the region where an astronaut standing on the Moon would see Earth covering only part of the Sun’s disc.
  3. The Moon’s leading edge enters the umbra, the cone of Earth’s shadow within which the Sun’s completely hidden. You should notice a dramatic darkening on the leading edge of the lunar disk. With a telescope, you can watch the edge of the umbra slowly engulfing one lunar feature after another, as the entire sky begins to grow darker.
  4. The trailing edge of the Moon slips into the umbra for the beginning of total eclipse. But the Moon won’t black out completely: It’s sure to glow some shade of intense orange or red.
  5. Why is this? The Earth’s atmosphere scatters and bends (refracts) sunlight that skims its edges, diverting some of it onto the eclipsed Moon. If you were on the Moon during a lunar eclipse, you’d see the Sun hidden by a dark Earth rimmed with the reddish light of all the sunrises and sunsets ringing the world at that moment.
  6. The red umbral glow can be quite different from one eclipse to the next. Two main factors affect its brightness and hue. The first is simply how deeply the Moon goes into the umbra as it passes through; the center of the umbra is darker than its edges. The other factor is the state of Earth’s atmosphere. If a major volcanic eruption has recently polluted the stratosphere with thin global haze, a lunar eclipse can be dark red, ashen brown, or occasionally almost black.
  7. In addition, blue light is refracted through Earth’s clear, ozone-rich upper atmosphere above the thicker layers that produce the red sunrise-sunset colors. This ozone-blue light tints the Moon also, especially near the umbra’s edge. You’ll need binoculars or a telescope to see this effect.
  8. As the Moon progresses along its orbit, events replay in reverse order. The Moon’s edge re-emerges into the sunlight, ending totality and beginning a partial eclipse again.
  9. When all of the Moon escapes the umbra, only the last, penumbral shading is left. Sometime later, nothing unusual remains.

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Published

on

By

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Astronomers have discovered the third interstellar comet to pass through our solar system. Named 3I/ATLAS (initially A11pl3Z), it was first spotted July 1 by the ATLAS telescope in Chile and confirmed the same day. Pre-discovery images show it in the sky as far back as mid-June. The object is racing toward the inner system at roughly 150,000 miles per hour on a near-straight trajectory, too fast for the Sun to capture. Estimates suggest its nucleus may be 10–20 km across. Now inside Jupiter’s orbit, 3I/ATLAS will swing closest to the Sun in October and should remain observable into late 2025.

Discovery and Classification

According to NASA, in early July the ATLAS survey telescope in Chile spotted a faint moving object first called A11pl3Z, and the IAU’s Minor Planet Center confirmed the next day that it was an interstellar visitor. The object was officially named 3I/ATLAS and noted as likely the largest interstellar body yet detected. At first it appeared to be an ordinary near-Earth asteroid, but precise orbit measurements showed it speeding at ~150,000 mph – far too fast for the Sun to capture. Astronomers estimate 3I/ATLAS spans roughly 10–20 km across. Signs of cometary activity – a faint coma and short tail – have emerged, earning it the additional comet designation C/2025 N1 (ATLAS).

Studying a Pristine Comet

3I/ATLAS was spotted well before its closest approach, giving astronomers time to prepare detailed observations. It will pass within about 1.4 AU of the Sun in late October. Importantly, researchers can study it while it is still a pristine frozen relic before solar heating alters it. As Pamela Gay notes, discovering the object on its inbound leg leaves “ample time” to analyze its trajectory. Astronomers are now racing to obtain spectra and images – as Chris Lintott warns, the comet will be “baked” by sunlight as it nears perihelion.

Determining its composition and activity is considered “a rare chance” to learn how planets form in other star systems. With new facilities like the Vera C. Rubin Observatory coming online, researchers expect more such visitors in the years ahead. 3I/ATLAS offers a rare chance to study material from another star system.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Science

NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax

Published

on

By

NASA's New Horizons Proves Deep-Space Navigation via Stellar Parallax

NASA’s New Horizons spacecraft carried out an unprecedented deep-space star navigation test while 438 million miles from Earth. Using its long-range camera in April 2020, it captured images of Proxima Centauri and Wolf 359, which appeared slightly shifted in the sky compared to Earth’s view – a striking demonstration of stellar parallax. It was the first-ever demonstration of deep-space stellar navigation. By comparing these images to Earth-based observations and a 3D star chart, scientists calculated New Horizons’ position to within about 4.1 million miles, only about 26 inches across the United States.

Stellar Parallax Test

According to the paper describing the results, accepted for publication in The Astronomical Journal, New Horizons’ camera imaged Proxima Centauri (4.2 light-years away) and Wolf 359 (7.86 light-years) on April 23, 2020. From the spacecraft’s distant vantage point, the two stars appear in different positions than seen from Earth – the essence of stellar parallax. By comparing those images with Earth-based data and a three-dimensional map of nearby stars, the team worked out the probe’s location to within about 4.1 million miles.

As lead author Tod Lauer explained, “Taking simultaneous Earth/Spacecraft images we hoped would make the concept of stellar parallaxes instantly and vividly clear”. He added, “It’s one thing to know something, but another to say ‘Hey, look! This really works!’”.

New Horizons and Future Missions

New Horizons, the fifth spacecraft to leave Earth and reach interstellar space, flew past Pluto and its moon Charon in 2015, sending home the first close-up images of those distant icy worlds. Now on an extended mission, the probe is studying the heliosphere.

New Horizons’ principal investigator Alan Stern called the parallax test “a pioneering interstellar navigation demonstration” that shows a spacecraft can use onboard cameras “to find its way among the stars”, in a statement. He also noted it “could be highly useful for future deep space missions in the far reaches of the Solar System and in interstellar space”

Continue Reading

Science

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Published

on

By

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Marine animals like fish and seals have long inspired ocean engineers due to their fluid, energy-efficient movements. Now, researchers are turning to these sea animals to create a new class of underwater gliders that requires very little energy, according to a team led by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison. They used artificial intelligence to design forms that slide through the water with less resistance, making long-term ocean exploration more efficient. These gliders, fabricated via 3D printing, promise better data collection on currents, salt levels, and climate impacts.

AI-Powered 3D Designs Create Energy-Efficient Underwater Gliders Inspired by Marine Life Forms

As per a study published on the arXiv preprint server, the team used machine learning to create and simulate numerous novel 3D glider shapes. By comparing traditional models—like submarines and sharks—with digitally altered versions, their algorithm learnt how different designs behaved at various “angles-of-attack.” A neural network then evaluated the lift-to-drag ratio of each shape, identifying those most likely to glide efficiently through water. These shapes were then fabricated using lightweight materials that minimised energy use.

In tests, two AI-generated prototypes—one shaped like a two-winged plane and the other like a four-finned flatfish—were built and tested both in wind tunnels and underwater. Key hardware was integrated with the gliders, including buoyancy control by a pump and a mass shifter to move the angle during displacements. The new gliders, with better shapes and lift-to-drag ratios, could travel farther on less power than traditional torpedo-shaped types.

The team added that what they are doing not only makes new types of designs possible but also reduces design times and cuts the cost since it doesn’t require physical prototyping. “This high degree of shape diversity hasn’t been investigated before,” Peter Yichen Chen, an MIT postdoc and co-lead author on the project, mentioned. He also noted that their AI pipeline allows testing forms that would be “very taxing” for humans to manually design.

The future plans are to produce slimmer and more manoeuvrable gliders and to improve the AI system with more configurable options. Intelligent bioinspired vehicles like these, the researchers say, will be essential in studying dynamic ocean environments that are changing quickly with the intensifying demands of industrial activity, ultimately offering more flexible and efficient ways for us to explore Earth’s last frontier.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Observations Give Forgotten Globular Cluster Its Moment to Shine



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Trending