Connect with us

Published

on

NASA’s huge next-generation rocketship was on course Wednesday for a crewless voyage around the moon and back hours after blasting off from Florida on its debut flight, half a century after the final lunar mission of the Apollo era.

The much-delayed launch kicked off Apollo’s successor program, Artemis, aimed at returning astronauts to the lunar surface this decade and establishing a sustainable base there as a stepping stone to future human exploration of Mars.

The 32-story-tall Space Launch System (SLS) rocket lifted off from NASA’s Kennedy Space Center at 1:47am EST (12:17pm IST), piercing the blackness over Cape Canaveral with a reddish-orange tail of fire.

About 90 minutes after launch, the rocket’s upper stage successfully thrust the Orion capsule out of Earth orbit and on its trajectory to the moon, NASA announced.

Launchpad Drama

Liftoff came on the third attempt at launching the multibillion-dollar rocket, after 10 weeks beset by technical mishaps, back-to-back hurricanes and two excursions trundling the spacecraft out of its hangar to the launch pad.

About four hours before Wednesday’s blastoff, crews had to deal with a flurry of simultaneous issues, including a leaky fuel valve.

Quick work on the launch pad by a special team of technicians, who tightened down a loose connection well inside the “blast zone” demarcated around a nearly fully fueled rocket, was credited with saving the launch.

The three-week Artemis I mission marks the first flight of the combined SLS rocket and the Orion capsule together, built by Boeing Co and Lockheed Martin Corp, respectively, under contract with NASA.

After decades with NASA focused on low-Earth orbit with space shuttles and the International Space Station (see graphic), it also signals a major change in direction for the agency’s post-Apollo human spaceflight program.

Named for the ancient Greek goddess of the hunt — and Apollo’s twin sister — Artemis aims to return astronauts to the moon’s surface as early as 2025.

More science-driven than Apollo — born of the Cold War-era U.S.-Soviet space race that put 12 NASA astronauts on the moon during six missions from 1969 to 1972 — the Artemis program has enlisted commercial partners such as Elon Musk’s SpaceX and the space agencies of Europe, Canada, and Japan.

The Artemis I mission entails a 25-day Orion flight bringing the capsule to within 97km of the lunar surface before flying 64,400km beyond the moon and looping back to Earth. The capsule is expected to splash down at sea on December 11.

You could feel it

The thunder of 8.8 million pounds of thrust produced at launch by the rocket’s four main R-25 engines and its twin solid-rocket boosters sent shock waves across the Kennedy complex, where crowds of spectators cheered and screamed.

“It was just incredible to see. It was so bright, so loud, you could feel it,” said NASA astronaut Jessica Meir, among those who could be selected for a future Artemis crew.

The Orion capsule will have some company around the moon from a tiny satellite, CAPSTONE, that reached its intended lunar orbit on Sunday to test a complex gravitational parking position called a “near-rectilinear HALO orbit.”

That position would be home to a future lunar space station called Gateway, slated for deployment later this decade as part of the Artemis venture.

The first Artemis voyage is intended to put the SLS-Orion vehicle through its paces in a rigorous demonstration flight, pushing its design limits to prove the spacecraft is safe and reliable enough to fly astronauts.

If the mission succeeds, a crewed Artemis II flight around the moon and back could come as early as 2024, followed within a few years by the program’s first lunar landing of astronauts, one of them a woman, with Artemis III.

Sending astronauts to Mars, an order of magnitude more challenging than lunar landings, is expected to take at least another decade and a half to achieve.

Billed as the most powerful, complex rocket in the world, the SLS represents the biggest new vertical launch system NASA has built since the Saturn V of the Apollo era.

Although no people were aboard, Orion carried a simulated crew of three – one male and two female mannequins — fitted with sensors to measure radiation levels and other stresses that astronauts would experience.

A top objective is to test the durability of Orion’s heat shield during re-entry as it hits Earth’s atmosphere at 39,400km per hour — much faster than re-entries from the space station.

The spacecraft also is set to release 10 miniaturized science satellites, called CubeSats, including one designed to map the abundance of ice deposits on the moon’s south pole, where Artemis seeks to eventually land astronauts.

More than a decade in development with years of delays and budget overruns, the SLS-Orion spacecraft has cost NASA at least $37 billion (roughly Rs. 3 lakh crore). Its Office of Inspector General has projected total Artemis costs at $93 billion (roughly Rs. 7.55 lakh crore) by 2025.

NASA says the program also has generated tens of thousands of jobs and billions of dollars in commerce.

© Thomson Reuters 2022


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Lake Mendota’s Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Published

on

By

Lake Mendota's Bacteria Are Stuck in an Evolutionary Loop, Finds Study

Seasonal variations in Lake Mendota in Wisconsin, US, appear to drive rapid evolutionary changes in bacterial species, as revealed through a long-term genetic study. Bacteria within the lake adapt to changing environmental conditions, with species undergoing significant genetic shifts over time. Despite these changes, many bacteria return to nearly identical genetic states each year, creating a cyclical pattern of evolution. The findings shed light on how microbial life responds to seasonal pressures, offering insights into broader ecological and evolutionary processes.

Bacterial Evolution Observed Over Decades

According to a study published in the Nature Microbiology journal, bacterial populations in Lake Mendota adapt to environmental shifts caused by the lake’s seasonal changes. Researchers examined genetic material from a unique archive of 471 water samples collected over 20 years.

Each year, bacteria responded to varying conditions, such as algae blooms in summer and ice cover in winter. Strains within species competed based on their adaptability to specific conditions, leading to a repeated cycle of genetic change.

Impact of Extreme Weather Events

Unusual weather in 2012 provided additional insights into bacterial evolution. During that year, early ice melt, hotter temperatures, and reduced algae levels resulted in significant genetic changes in bacterial communities. Research revealed a notable shift in genes related to nitrogen metabolism among several species, indicating long-term genetic adaptations to these atypical conditions.

Implications for Climate Change

Robin Rohwer, a researcher at the University of Texas at Austin, told Phys.org that climate change may intensify such evolutionary responses, as extreme weather events become more frequent. These findings highlight the adaptability of microbial ecosystems to both gradual and abrupt environmental changes.

Advanced Techniques Unlock New Discoveries

The study, led by Rohwer and supported by computational resources at the Texas Advanced Computing Center, reconstructed bacterial genomes from fragmented DNA samples. With over 30,000 genomes analysed, this research represents one of the most extensive investigations into microbial evolution in a natural setting, offering valuable data for future studies.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


First-Ever Female Burial with Weapons, Believed to Be a Warrior, Discovered in Hungary

Continue Reading

Science

First-Ever Female Burial With Weapons Uncovered in Hungary

Published

on

By

First-Ever Female Burial With Weapons Uncovered in Hungary

The first confirmed case of a female burial with weapons from the 10th century in the Carpathian Basin, Hungary, has been uncovered. Skeletal remains and grave goods, including weaponry, were identified at the Sárrétudvari-Hízóföld cemetery. This discovery, described by experts, challenges prior assumptions about societal roles during the Hungarian Conquest period, a time marked by mounted archers and frequent conflicts. Although evidence of weapons was present, researchers approached conclusions cautiously, ensuring findings were grounded in detailed analysis.

Archaeological Findings and Methodology

The study was led by Dr. Balázs Tihanyi and his colleagues, published in PLOS ONE. As reported by Phys.org, the burial contained a silver penannular hair ring, bell buttons, a bead necklace, and archery-related items such as an arrowhead, quiver parts, and an antler bow plate. Genetic and morphological tests confirmed the individual, referred to as SH-63, was female, despite the poor preservation of skeletal remains.

Dr. Balázs Tihanyi, leader of the research team, told the publication that the combination of grave goods in SH-63’s burial was unique within the cemetery, blending typically male and female items.

Challenges in Determining Warrior Status

The presence of weapons did not lead to assumptions about SH-63’s status as a warrior. Researchers noted that being part of a warrior class involved specific societal roles, and physical evidence alone is insufficient for confirmation.

Indicators such as joint changes and trauma were identified, possibly suggesting activities like horse riding or weapon use. However, it was emphasised that these signs could also result from daily life unrelated to warfare.

Historical Implications

It was reported that this discovery provides a glimpse into the complexity of life in 10th-century Hungary, with SH-63’s burial raising questions about gender roles and social structures of the time. Further investigations are planned to compare this case with others from the same period, aiming to deepen understanding of the era’s societal dynamics.

Continue Reading

Science

JUNO Neutrino Detector Nears Completion, Set to Begin Operations in 2025

Published

on

By

JUNO Neutrino Detector Nears Completion, Set to Begin Operations in 2025

Physicists are finalising the Jiangmen Underground Neutrino Observatory (JUNO), a facility designed to unravel the mysteries surrounding neutrinos, subatomic particles with no electric charge and minimal mass. Scheduled to commence data collection in summer 2025, the observatory aims to identify the heaviest among the three neutrino types. Situated 700 metres beneath the ground in China, the project represents a significant step in the study of these elusive particles and their antiparticle counterparts, antineutrinos.

Key Features of the JUNO Detector

According to a Science News report, the observatory features a 35-metre-wide acrylic sphere at its core, which will hold 20,000 metric tons of liquid scintillator. This liquid is engineered to emit light when particles from an antineutrino interaction are detected. The setup includes tens of thousands of photomultiplier tubes to capture these light signals. To minimise interference from other particles, the detector is surrounded by a water-filled cylindrical pit, the filling of which began on December 18, 2024.

Focus on Antineutrinos

Antineutrinos from two nuclear power plants located 50 kilometres away will be observed, offering insights into their properties and interactions. According to project sources, this experimental setup will not only aid in determining neutrino masses but also contribute to broader physics research, including the understanding of matter-antimatter asymmetry.

Significance of JUNO

Reports indicate that this observatory will be the largest of its kind globally, with scientists expecting groundbreaking findings. By investigating antineutrinos in detail, JUNO is anticipated to enhance understanding of subatomic physics and the fundamental structure of the universe.

The collaborative efforts of international teams underscore the importance of the project in advancing neutrino research. This facility marks a major advancement in the quest to uncover the properties of neutrinos, with its findings expected to have far-reaching implications in the field of particle physics.

Continue Reading

Trending