Quaise Energy is on a mission to prove that deep geothermal drilling could provide more than enough clean energy to meet the world’s needs as we move away from fossil fuels. Matt Houde, cofounder at Quaise Energy, explained its potential at the TEDX Boston Planetary Stewardship Event last week.
The aim of the Boston event, which was timed to run at the same time as COP27 in Egypt, was to “spotlight actionable ideas for human activity to achieve a sustainable relationship with the planet’s natural systems,” according to TEDX Boston’s website.
Deep geothermal’s potential
Houde, a speaker at TEDX Boston, explained why deep geothermal has so much potential:
The total energy content of the heat stored underground exceeds our annual energy demand as a planet by a factor of a billion. So tapping into a fraction of that is more than enough to meet our energy needs for the foreseeable future.
But we can’t yet drill deep enough to unlock that energy. Houde continued:
If we can get to 10 miles down, we can start to find economic temperatures everywhere. And if we go even deeper, we can get to temperatures where water [pumped to the site] becomes supercritical, [a steam-like phase that will allow] a step change improvement in the power production per well and so cheapen the cost of energy.
The deepest hole that’s been drilled to date, the Kola borehole in Russia, is 7.6 miles deep. It took 20 years to complete because conventional equipment like mechanical drill bits break down at those depths.
“And the truth is, we’ll need hundreds if not thousands of Kola boreholes if we want to scale geothermal to the capacity that’s needed,” Houde said. He went on to assert that Quaise:
[I]s developing technology to blast rock with microwaves to potentially drill the deepest holes on Earth. And no, I’m not stealing a plot device from Star Trek. This technology is real and has been proven in [an MIT] lab.
Deep geothermal’s possibility
Houde explained the benefits of deep geothermal energy in general. These include being available 24/7, which “can help balance out the intermittent flows of wind and [solar].” Deep geothermal plants also won’t need much land. Houde illustrated this with an artist’s rendition of a future rig next to truck shipping containers (see main photo).
Houde also said that deep geothermal is “the perfect energy source to take advantage of the largest workforce in the world, the oil and gas industry.” That industry has “11 million jobs in the US alone, and a skill set that is exactly what’s needed for geothermal to rapidly scale.”
Drilling with microwaves
Quaise is working to replace conventional drill bits with millimeter wave energy – cousins to the conventional microwaves we heat up our leftovers with. Those millimeter waves literally melt then vaporize the rock to create ever-deeper holes.
Scientists developed the general technique at MIT over the last 15 years, and proved that millimeter waves could actually drill a hole in basalt. The gyrotron machine that produces the millimeter wave energy has been used for around 70 years in nuclear fusion research.
Quaise’s technique also uses conventional drilling technologies developed by the oil and gas industry. The company will use these to drill down through surface layers – what they were optimized for – to basement rock – which millimeter waves can easily power through.
Houde explained that millimeter waves “are ideal for the hard, hot, crystalline rock deep down that conventional drilling struggles with.” They’re not as efficient in the softer rock closer to the surface, but “those are the same formations that conventional drilling excels at.” That’s why Quaise applies a hybrid approach to the problem.
Challenges remain
There are still several challenges that Quaise has to tackle in order to scale its technology, including a better understanding of rock properties at great depths. Further, Houde said, “we need to advance the supply chain for gyrotrons” and the waveguides that carry their energy downhole. That equipment is currently optimized for specialized one-off projects in fusion research. For deep geothermal applications, they must be produced in quantity and be robust and reliable in a field environment.
There are also engineering challenges that must be addressed. Houde said:
Chief among them is, how do we ensure full removal of the ash [created by the process] and transport that ash up the borehole over long distances?
Progress so far
In the MIT lab, engineers drilled a hole in basalt with a 1:1 aspect ratio – 2 inches deep by 2 inches in diameter. Quaise built upon MIT’s results by scaling up the power density of the microwave beam and the depth of the hole by a factor of 10 to achieve a 10:1 aspect ratio. The company is now building the first field-deployable prototype millimeter-wave drilling rigs.
Houde said:
Our current plan is to drill the first holes in the field in the next few years. And while we continue to advance the technology to drill deeper, we will also explore our first commercial geothermal projects in shallower settings.
Image: Hector Vargas/Quaise Energy
UnderstandSolar is a free service that links you to top-rated solar installers in your region for personalized solar estimates. Tesla now offers price matching, so it’s important to shop for the best quotes. Click here to learn more and get your quotes. — *ad.
FTC: We use income earning auto affiliate links.More.
In a joint statement, French and German economists have called on governments to adopt “a common approach” to decarbonize European trucking fleets – and they’re calling for a focus on fully electric trucks, not hydrogen.
France and Germany are the two largest economies in the EU, and they share similar challenges when it comes to freight decarbonization. The two countries also share a border, and the traffic between the two nations generates major cross-border flows that create common externalities between the two countries.
And for once, it seems like rail isn’t a viable option:
Advertisement – scroll for more content
While rail remains competitive mainly for heavy, homogeneous goods over long distances. Most freight in Europe is indeed transported over distances of less than 200 km and involves consignment weights of up to 30 tonnes (GCEE, 2024) In most such cases, transportation by rail instead of truck is not possible or not competitive. Moreover, taking into account the goods currently transported in intermodal transport units over distances of more than 300 km, the modal shift potential from road to rail would be only 6% in Germany and less than 2% in France.
That leaves trucks – and, while numerous government incentives currently exist to promote the parallel development of both hydrogen and battery electric vehicle infrastructures, the study is clear in picking a winner.
“Policies should focus on battery-electric trucks (BET) as these represent the most mature and market-ready technology for road freight transport,” reads the the FGCEE statement. “Hence, to ramp-up usage of BET public funding should be used to accelerate the roll-out of fast-charging networks along major corridors and in private depots.”
The appeal was signed by the co-chair of the advisory body on the German side is the chairwoman of the German Council of Economic Experts, Monika Schnitzer. Camille Landais co-chairs the French side. On the German side, the appeal was signed by four of the five experts; Nuremberg-based energy economist Veronika Grimm (who also sits on the National Hydrogen Council, which is committed to promoting H2 trucks and filling stations) did not sign.
With companies like Volvo and Renault and now Mercedes racking up millions of miles on their respective battery electric semi truck fleets, it’s no longer even close. EV is the way.
On today’s tariff-tastic episode of Quick Charge, we’ve got tariffs! Big ones, small ones, crazy ones, and fake ones – but whether or not you agree with the Trump tariffs coming into effect tomorrow, one thing is absolutely certain: they are going to change the price you pay for your next car … and that price won’t be going down!
Everyone’s got questions about what these tariffs are going to mean for their next car buying experience, but this is a bigger question, since nearly every industry in the US uses cars and trucks to move their people and products – and when their costs go up, so do yours.
New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.
Advertisement – scroll for more content
Got news? Let us know! Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.
FTC: We use income earning auto affiliate links.More.
GE Vernova has produced over half the turbines needed for SunZia Wind, which will be the largest wind farm in the Western Hemisphere when it comes online in 2026.
GE Vernova has manufactured enough turbines at its Pensacola, Florida, factory to supply over 1.2 gigawatts (GW) of the turbines needed for the $5 billion, 2.4 GW SunZia Wind, a project milestone. The wind farm will be sited in Lincoln, Torrance, and San Miguel counties in New Mexico.
At a ribbon-cutting event for Pensacola’s new customer experience center, GE Vernova CEO Scott Strazik noted that since 2023, the company has invested around $70 million in the Pensacola factory.
The Pensacola investments are part of the announcement GE Vernova made in January that it will invest nearly $600 million in its US factories and facilities over the next two years to help meet the surging electricity demands globally. GE Vernova says it’s expecting its investments to create more than 1,500 new US jobs.
Advertisement – scroll for more content
Vic Abate, CEO of GE Vernova Wind, said, “Our dedicated employees in Pensacola are working to address increasing energy demands for the US. The workhorse turbines manufactured at this world-class factory are engineered for reliability and scalability, ensuring our customers can meet growing energy demand.”
SunZia Wind and Transmission will create US history’s largest clean energy infrastructure project.
If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.