Connect with us

Published

on

Idealab and Heliogen Founder Bill Gross speaks onstage during Vox Media’s 2022 Code Conference on September 08, 2022 in Beverly Hills, California.

Jerod Harris | Getty Images Entertainment | Getty Images

Bill Gross is best known for founding the technology incubator Idealab in 1996, after starting a handful of companies in software, education tech and online services spaces.

In the quarter-century since, Idealab has has started more than 150 companies and had more than 45 successful exits. Today, Gross devotes virtually all of his time to being the CEO of clean energy company Heliogen, which he launched out of Idealab in 2013, scoring Bill Gates as an early investor.

But Gross has always been a climate tech entrepreneur. He’s just had to wait for the world to catch up with him a bit.

He actually started a solar device company when he was in high school, long before he got into software, and the money he made helped him pay for college.

Gross grew up in the San Fernando Valley in Los Angeles. When he was 15, in 1973, gas was rationed after OPEC imposed an oil embargo against the United States in order to punish the U.S. for providing support to Israel in the Arab-Israel war.

“You only could buy five dollars of gasoline per day. And I remember that my mother couldn’t buy enough gasoline to drive me to school,” Gross told CNBC in a video interview earlier in the fall.

So Gross had to ride his bike to high school. “As I’m riding both ways on the bicycle, I’m sitting here thinking, ‘It’s crazy that there’s somewhere else in the world that could decide to cut off your fuel supply, the thing that people need for their livelihood.’ I didn’t understand anything about climate change, or energy or anything. I just thought, ‘Someone else could do that?! That’s crazy.'”

This thought is still relevant now almost 50 years later, as Russia has cut off supplies of gas it is sending to Europe in response to the Ukraine war.

Gross went to the library after school to read about alternative renewable forms of energy such as solar energy and wind energy in the likes of Popular Science or Scientific American magazines. He got excited about the idea of renewable energy, had just taken trigonometry in school and used his newfound knowledge of both to make a couple of devices based on the idea of catching the sunlight and concentrating it.

Notes from when Bill Gross was a teenager developing the solar device that he went on to sell by mail in the 1970’s.

Photo courtesy Bill Gross

One device he made was a parabola-shaped solar concentrator that could be used to create a solar oven or solar cooker. The other was a Stirling engine, which converts heat energy into kinetic or mechanical energy.

“Because I was reading Popular Science magazine, I saw people used to take out little ads in the back,” Gross told CNBC. “And I had $400 of bar mitzvah money leftover, so I took out a small add in the back of Popular Science advertising ‘Kits and plans to make your own solar concentrator,’ and I started selling them!”

He would go on to sell 10,000 of these plans and kits starting at $4 apiece. Personal computers didn’t yet exist, so he typed the material on a typewriter and made the drawings himself by hand.

An advertisement that Bill Gross placed in the back of Popular Science magazine to advertise his solar devices company. The plans Gross sold were $4.00, but the ad says 25 cents to get a catalog, because he had a few different offerings.

Courtesy Bill Gross

He put what he made towards his college tuition. People from all over the country bought the kits and would send Gross a check or cash. It was his first foray into entrepreneurship, which was exciting, he said, and the experience served to change the trajectory of his life in other ways, too.

“I was really passionate about it back then. It really affected my life,” Gross told CNBC. “I wrote about that little business I started — it was called Solar Devices — on my application to college and it got me into CalTech. So it probably had a huge impact on my direction.”

For a long time, ‘nobody cared’

Gross studied mechanical engineering at CalTech while continuing to run the Solar Devices business during his first year, but then college got too demanding and he couldn’t keep up with running the business. Gross graduated from CalTech in 1981, right around the time IBM released its first mass-market personal computer.

Solar Devices order tracking from Bill Gross, circa 1970’s.

Photo courtesy Bill Gross

“I have these two seminal things that happen in my life: The Arab oil embargo and now the PC is invented basically on my day of graduation in 1981,” Gross told CNBC. “So I went down and bought an IBM PC. And I started learning how to program and I had a detour for 20 years doing software.”

Gross’ detour into software started in the early 1980’s when he wrote accounting software inside of Lotus 1-2-3 to help manage his business making and selling high-performance loudspeakers. He started selling that software for $695. Gross, his brother and two CalTech friends came up with a natural language interface to Lotus 1-2-3, which they showed off at a Las Vegas tech show in 1985. Lotus ended up acquiring the product (and the four of them) for $10 million.

Gross later founded an educational software company and sold it to Vivendi for $90 million, then started tech incubator Idealab at the dawn of the dot-com boom. In the early 2000s, he decided to begin to pivot back to climate tech, this time with some money in the bank.

Bill Gross graduating from college.

Photo courtesy Bill Gross.

He started doing research and development in the space, but there wasn’t enough demand for solar energy tech. “I was way too early. No one cared,” Gross told CNBC.

“I remember I was working on this when Al Gore came out with ‘Inconvenient Truth.’ Still, nobody cared. I remember working on this in 2008 during the recession, nobody cared. I remember in the early 2010, 2012, people started talking about it, but there was no Greta yet,” Gross said, referring to the climate activist Greta Thunberg, who started protesting a lack of climate change action in 2018. “There was no movement. And certainly there was no inflation Reduction Act, which is a game changer,” Gross said.

In 2010, Gross heard Bill Gates speak at a TED conference about needing to make energy and energy storage cheaper. After that talk, Gross approached Gates and shared his idea of using computational power to improve the efficiency of solar power. Gates ended up investing in Gross’s idea, seeing the potential to replace many industrial processes that require high heat and burn fossil fuels to get there.

In 2013, Gross launched Heliogen, which uses artificial intelligence to position a collection of mirrors located in a circle around a central tower to reflect the sunlight back with maximum impact.

One critical component of Heliogen’s approach is built-in energy storage. One limiting factor for solar energy is its intermittency, which means it only delivers power when the sun is shining. But Heliogen stores energy as heat in a thermos of rocks — something traditional solar panels cannot do without batteries, as they turn the sun’s rays immediately into electricity.

“We’re gathering the energy when the sun is out. But we’re delivering the energy continuously because the energy is coming out of the rock bed,” Gross told CNBC. “And basically we are recharging the rock bed, like you would recharge your battery. The difference is a battery expensive, and rock bed is cheap.”

In 2019, Heliogen announced it had successfully concentrated solar energy to temperatures over 1,832 degrees Fahrenheit.

A bird’s eye view of the concentrated solar technology Heliogen is working to build and commercialize. This is the demonstration project in Lancaster, Calif.

Photo courtesy Heliogen

“Heliogen is the culmination of my life’s work,” Gross told CNBC, because it uses both software and renewable energy expertise.

The company had its first prototype in 2015, “but then, still, nobody cared. Couldn’t get any customers,” Gross said. He did get a couple of customers, but, it was still “struggling, struggling, struggling.” By 2019, Heliogen had the first large-scale system built and this time, “the world went crazy,” Gross said. “We got so much press and publicity, and customers started calling us all over who wanted to replace fossil fuels with concentrated sunlight, and then Covid hit,” Gross said.

After a bit of a Covid slowdown, interest started picking up again as the urgency around decarbonizing mounted and as energy price volatility made companies rethink their energy supply strategies, Gross said. The company went public via SPAC in a deal that landed $188 million of gross cash proceeds to Heliogen and on Dec. 31, 2021, Heliogen started trading.

The company is not yet profitable, losing $108 million in the first nine months of the year, but that’s expected as the company scales, according to Gross.

“We projected we would run at a loss for the few years of operation as we drive down the cost with volume production and the renewable energy production learning curve,” Gross told CNBC.

Heliogen’s first commercial grade project is in the final stages of permitting and aims to break ground next year in Mojave, California. The concentrated solar field is funded with $50 million from Woodside Energy, a wholly owned subsidiary of the Australian energy producer Woodside Petroleum, and $39 million from the U.S. Department of Energy.

This is the demonstration project in Lancaster, Calif. of the the concentrated solar technology Heliogen is working to build and commercialize.

Photo courtesy Heliogen

While Gross has been ahead of the curve for most of his climate career, he’s confident the industry is catching up with him now. As the urgency surrounding climate change has become more widely understood, corporate executives face pressure from stakeholders to clean up their corporate emissions.

“But then the final straw was price of fossil fuels went up like crazy. The price of fossil fuels after Russia invaded Ukraine is a game changer,” Gross told CNBC. “Now, it’s not just for CO2 emissions, now you can save money. Now, this is the ultimate thing, which is make the energy transition be about reducing your cost, not about increasing your cost.”

There’s no time to waste.

“When I was a teenager, there was 320 parts per million of CO2 in the atmosphere,” said Gross, who is now 64 years old. “And today, there are 420.”

Why the U.S. power grid has become unreliable

Continue Reading

Environment

Bidirectional charging may be required on EVs soon due to new CA law

Published

on

By

Bidirectional charging may be required on EVs soon due to new CA law

It’s an exciting week for grid resiliency-lovers in California, as Governor Gavin Newsom followed up his earlier smart grid law and signed another law this week which may require bidirectional charging on EVs in the future – though the law has no hard timeline attached, so it may be a while before we see this happen.

Bidirectional charging refers to the capability of electric vehicles to not just take electricity from the grid to charge, but to output electricity in various forms, whether this be vehicle-to-load (plugging in devices, like the 1.8kW capability on the Kia Niro EV), vehicle-to-home (like Ford’s “Intelligent Backup Power” system), or vehicle-to-grid (like the Nissan Leaf is capable of).

While these applications may seem like a party trick, widespread use of bidirectional charging could lead to huge benefits for efficiency, grid resiliency, and enable much greater penetration of renewable electricity generation.

Most electric grids don’t really have trouble meeting the regular everyday needs of electricity consumers, it’s when big spikes happen that things get difficult. Either on a hot day when everyone is using air conditioning, or a day when electricity generation is curtailed for some reason or another, that’s when things get difficult.

And as climate change makes temperatures hotter, California’s grid is often overtaxed on the hottest summer days, which are becoming more numerous. Even worse, methane-burning fossil gas peaker plants are the highest-polluting form of electricity California consumes, and these are currently used at peak times in order to deal with high demand.

One solution to this problem is adding energy storage to the grid which can be dispatched when needed, and which can fill up when the grid is oversupplying electricity. This helps to balance out supply and demand of electricity and make everything a little more predictable.

This is why there has been a push for grid-based storage like Tesla megapacks, which represent a large source of rapidly-dispatchable energy storage.

But there’s another source of grid-connected batteries out there which was right under our nose the whole time: electric cars.

EVs, which are mostly connected to the internet anyway, could be used as a distributed energy storage device, and even called upon to help provide electricity when the grid needs it. We already see this happening with Virtual Power Plants based on stationary storage, but if cars had V2G, theoretically cars could contribute in a similar way – both saving the grid, and perhaps making their owners some money along the way via arbitrage (buying electricity when its cheap and selling it when its expensive).

The problem is, not many automakers have included V2G capabilities in their cars, and in the cars that do have it, not many manufacturers have made V2G-capable equipment, and the ones who have built it haven’t seen that many customers who are interested in spending the extra money to upgrade their electrical systems with V2G-capable equipment.

So there needs to be something to jumpstart all of that, and California thinks it might just have the thing.

New CA law might require bidirectional charging
 eventually.

The idea started in 2023 when state Senator Nancy Skinner introduced a bill which would require EVs to have bidirectional charging by 2027.

As this bill made its way through the legislative process, it got watered down from that ambitious timeline. So the current form of the bill, which is now called SB 59, took away that timeline and instead gave the California Energy Commission (CEC) the go-ahead to issue a requirement whenever they see it fit.

The bill directs the CEC, the California Air Resources Board, and the California Public Utilities Commission to examine the use cases of bidirectional charging and give them the power to require specific weight classes of EVs to be bidirectional-capable if a compelling use case exists.

The state already estimates that integrating EVs into the grid could save $1 billion in costs annually, so there’s definitely a use case there, but the question is the cost and immediacy of building those vehicles into the grid.

The reason this can’t be done immediately is that cars take time to design, and while adding bidirectional charging to an EV isn’t the most difficult process, it also only really becomes useful with a whole ecosystem of services around the vehicle.

A recent chat Electrek had with DCBEL, making bidirectional chargers simpler for consumers

Even Tesla, which for years has touted itself a tech/energy company and sold powerwalls, inverters, solar panels and so on, is still only gradually trickling its bidirectional Powershare feature out onto its vehicles.

And that ecosystem has been a bit of a hard sell so far. It’s all well and good to tell someone they can make $500/year by selling energy to the grid, but then you have to convince them to buy a more expensive charging unit and keep their car plugged in all the time, with someone else managing its energy storage. Some consumers might push back against that, so part of CEC’s job is to wait to pull the trigger until it becomes apparent that people are actually interested in the end-user use case for V2G – otherwise, no sense in requiring a feature that nobody is going to use.

Electrek’s Take

Given all of these influences, we wouldn’t expect CA to require bidirectional charging any time soon. But it still gives the state a powerful trigger to pull if other efforts, like the recently-signed smart grid law, turn out not to be enough as California works to, grow, clean up, and make its grid more affordable all at the same time.

But having the force of law behind it could turn V2G into less of a parlor trick and more into something that actually makes a difference the way us EV nerds have been dreaming of for decades now (true story: Electrek once turned down Margot Robbie for an interview and instead talked to some engineers about V2G for an hour).

So, telling manufacturers that California may start mandating bidirectional charging soon means that those manufacturers will perhaps start taking V2G more seriously, particularly given the size and influence of CA’s car market. Even if the CEC doesn’t make it a requirement, the threat of it eventually becoming one means that EV-makers will probably start getting ready for it regardless.

There’s no real point to a single person discharging their car into the grid, but when millions of cars are involved, you could work to flatten out the famous “duck curve,” which describes the imbalance between electricity supply and demand. We hear a lot about “intermittency” as the problem with wind and solar, and grid storage as the solution to that, so being able to immediately switch on gigawatt-hours worth of installed storage capacity would certainly help to solve that problem. And we hope this law helps us get just a little closer to that potential future.


And if you want to sell power back to the grid today, you can already do that with home solar panels! In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Industry first: Komatsu reveals power agnostic 320 ton haul truck

Published

on

By

Industry first: Komatsu reveals power agnostic 320 ton haul truck

Japanese equipment giant Komatsu dropped its new, 320-ton Power Agnostic 930E mining truck at MinsExpo trade show in Las Vegas, calling it a future-ready solution that can run on diesel, hydrogen, or pure electric power.

Komatsu continues to develop alternative engine technology with the release of its first commercial rigid-frame dump truck with a “power agnostic” platform for running on diesel, hydrogen, or even battery electric power.

That’s because the platform is designed around the concept of a modular powertrain. The design not only gives the Komatsu assembly line an easy way to build diesel, BEV, and hydrogen fuel cell rigid haulers on the same line, but also enables customers to upgrade from diesel to battery electric or hydrogen down the road, if and when whatever logistical obstacles that are preventing them from running an electric or hydrogen solution today are overcome.

“This platform enables mining companies to start with conventional diesel engines and gradually transition to cleaner energy sources as needed, including utilization of trolley assist for diesel or as one of the future dynamic charging solutions for battery trucks to reduce fuel consumption and emissions,” reads Komatsu’s press material. “Whether adopting battery technology, hydrogen fuel cell technology or a combination of energy systems, the Power Agnostic 930E provides the infrastructure and adaptability necessary to meet evolving sustainability goals.”

Potential customers got a sneak peek at the concept truck, which they were apparently allowed to test at Komatsu’s Arizona proving grounds ahead of MineExpo (I wasn’t invited). The first pre-production Power Agnostic 930E prototype will make its way to Sweden in the coming months, where it will be put to work alongside other electric Komatsu machines in Boliden’s Aitik copper mine, one of the largest such operations on the European continent.

Electrek’s Take

Komatsu Power Agnostic 930E; via Komatsu.

Converting gas and diesel-fueled cars to electric at scale is a concept that’s fraught with problems. Far too many to list here, in fact. But heavy equipment?

Everything from excavators to loaders to heavy trucks are already built to be powertrain agnostic, and manufacturers will often offer the same basic vehicle with Cummins, Detroit Diesel, or Volvo Pentapower, so there’s a degree of openness baked into those systems already. Komatsu is just taking that to the next level by adding a modularity of energy storage (fuel tanks, hydrogen cells, or battery packs) to the mix. And, if the project is successful, it could be the first of many.

SOURCE | IMAGES: Komatsu; Equipment World.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

isinwheel has an electric ride for everyone – check out these 6 standouts

Published

on

By

isinwheel has an electric ride for everyone – check out these 6 standouts

isinwheel’s terrific personal EVs “bring all the things you want closer to you.” Whether it’s an electric scooter, an e-bike, or an e-skateboard, the three things you’re guaranteed to get no matter which you choose are fun, safety, and affordability.

We’re taking a closer look below at six of isinwheel’s personal EVs – could one of these be your next electric ride?

Table of contents

isinwheel S9Pro commuting electric scooter

Meet the isinwheel S9Pro, the best value-for-money electric scooter that zips you through your day at speeds up to 19 mph with a range of 19 miles – perfect for your daily commute.

The S9Pro‘s powerful 350W motor delivers a smooth, efficient ride without breaking the bank. With a lightweight, foldable aluminum frame, it’s easy to carry, store, and even pop into your car trunk or onto public transport. Plus, the quick one-step folding mechanism makes it the ultimate on-the-go companion.

You can find the S9Pro on Amazon here.

isinwheel S10Max long-range electric scooter

The isinwheel S10Max is your ultimate high-performance ride, powered by a beastly 1000W motor that conquers any terrain with ease. With an impressive range of up to 37 miles, you can enjoy long-distance adventures without worrying about recharging.

The S10Max‘s all-terrain 10-inch off-road tires, paired with dual shock absorption, provide unbeatable grip and stability whether you’re cruising through city streets, on country paths, or on muddy trails.

You can find the S10Max on Amazon here.

isinwheel GT2 off-road electric scooter

isinwheel

Unleash your adventurous side with the isinwheel GT2. With a powerful 1000W motor, it rockets up to 28 mph, effortlessly conquering steep hills and challenging landscapes for a thrilling ride every time.

Its 11-inch off-road tires are built for all terrains, whether you’re cruising through the city or tackling rugged countryside paths. Plus, with four advanced shock absorbers, every ride is smooth and stable, no matter where your journey takes you. Get ready to ride the GT2 and experience performance like never before!

You can find the GT2 on Amazon here.

isinwheel M10 electric commuter bike

isinwheel

The isinwheel M10 electric commuter bike blends style with power. Crafted from lightweight, rust-resistant aluminum alloy, this sleek ride weighs just 47 pounds, making it easy to carry and tough enough to last.

With a professional 35-speed transmission, the M10 adapts to your every need, whether you’re accelerating, cruising downhill, or conquering steep inclines. With a 500W motor capacity, a top speed of 20 mph, 374 Wh battery capacity, and four hours of charging time, it’s the perfect blend of performance and convenience for your daily commute!

You can find the M10 on Amazon here.

isinwheel U1 folding electric bike

isinwheel

Say hello to the versatile isinwheel U1! With folding handlebars, pedals, and a height-adjustable seat, it’s perfect for easy storage and transport. The U1’s 500W motor comes with a smart chip that instantly adapts to give you that extra boost when you hit an incline, face a headwind, or carry more weight.

The U1 has a top speed of 18 mph, 280 Wh of battery capacity, and three hours of charging time. Whether you’re zipping through city streets or tackling hills, the U1 has you covered with power and portability.

You can find the U1 on Amazon here.

Check out isinwheel’s V8, V6 and V10 electric skateboards

The isinwheel V8 electric skateboard is your ticket to thrilling rides, featuring a top speed of 28 mph and a range of up to 12 miles. Its removable, detachable batteries allow for quick swaps, so you can extend your adventure with ease. Choose from four riding modes and let the gorgeous ambient lights make you stand out, whether you’re cruising in daylight or lighting up the night. With its powerful dual 540W motors and regenerative braking system, the V8 delivers a ride that’s as exhilarating as it is stylish.

The V8 is isinwheel’s first-gen electric skateboard, and we’ve also taken it to the next level. The V6 is perfect for teens and beginners, and the high-performance V10 is for those who crave more power. But we’re not stopping there – this September, we’re launching the V6 PRO, the ultimate cool ride for young skaters and newbies. Stay tuned; it’s going to be epic!

You can find the V8/V6/V10 on Amazon here.

Follow isinwheel on Instagram here, on X here, on YouTube here, and on Facebook here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending