Connect with us

Published

on

The Vogtle nuclear power plant is located in Burke County, near Waynesboro, Georgia in USA. Each of the two existing units have a Westinghouse pressurized water reactor (PWR), with a General Electric turbine and electric generator, producing approximately 2,400 MW of electricity. Two Westinghouse made AP 1000 reactors are under construction here.

Pallava Bagla | Corbis News | Getty Images

Venture capitalists in Silicon Valley and other tech hubs are investing money in nuclear energy for the first time in history. That’s changing its trajectory and pace of innovation.

“There’s not been a resurgence of nuclear power, ever, since its heyday in the late 1970s,” Ray Rothrock, a longtime venture capitalist who has personal investments in 10 nuclear startups, told CNBC.

Now, that’s changing. “I have never seen this kind of investment before. Ever.”  

How nuclear power is changing

Jacob DeWitte, CEO of micro-reactor startup Oklo, says the landscape has changed dramatically since he started raising money in 2014, when he was a part of the Y Combinator startup incubator.

“More investors are interested, more investors are excited by the space, and they’re getting smarter to do the diligence and know what to do here — which is good,” DeWitte told CNBC.

This surge of private investment will be a positive for the industry, agrees John Parsons, an economist and lecturer at MIT.

“I think having fresh perspectives is really good,” Parsons told CNBC. Nuclear energy is “a very complex science, and it’s been supported by the federal government and at these national labs. And so that’s a very small circle of people. And when you broaden that circle, you get a lot of new minds, different thinking, a variety of experiments.”

In any industry, there can be a “groupthink” or “narrowness” in the way things are done over time, Parsons said. With private investment in the space, “there will be out-of-the-box thinking,” he said. “Maybe that out-of-the-box thinking doesn’t produce anything useful. Maybe it turns out that the old designs are the best. But I think it’s really wonderful to have the variety of takes.”

Not everyone is so optimistic that the recent influx of venture dollars will lead to progress.

“Investors have often invested in stupid things that didn’t work,” Naomi Oreskes, a professor of the history of science at Harvard University, told CNBC. “Because the reality is that in a 75-year history of this technology, it has never been profitable in a market-based system.” If investors are putting money into nuclear now, that’s because they think they can make money, and “I can only think they believe they will make money because they think that there’s a big opportunity to have the federal government pick up a big part of the tab,” Oreskes said.

Pitchbook’s private investment data for nuclear technology data includes both fusion and fission.

Chart courtesy Pitchbook.

Nuclear investment by the numbers

From 2015 to 2021, total venture capital deal flow in the United States increased 54% in terms of deals closed and 294% by dollar value, according to data compiled by private capital market research firm Pitchbook for CNBC. In that same time, climate investing deal flow in the United States jumped by 214% in terms of volume and 1,348% by dollar value.

In the nuclear space, investment rose even faster — 325% by volume and 3,642% by dollar value, according to Pitchbook.

Some of the rapid pace of increase in investment in the nuclear sector is explained by its starting point — virtually zero.

“This is still pretty small compared to the private investments in renewables,” like wind and solar, for example, said David Schlissel, director of resource planning analysis at the Institute for Energy Economics and Financial Analysis, a market research firm.

The venture market slowed overall in 2022, and nuclear investment is no exception. Concerns about the war in Ukraine, inflation, a wave of layoffs and murmurs of a recession have made investors nervous in the public markets and private alike.

Pitchbook includes companies developing technologies to mitigate or adapt to climate change in this category. Examples include renewable energy generation, long duration energy storage, the electrification of transportation, agricultural innovations, industrial process improvements, and mining technologies.

Chart courtesy Pitchbook

“At the beginning of the year, we were looking at a much different financial paradigm for nuclear startups seeking funding. Now, following a war, and inflationary related forces, the fundraising market is just not what it was earlier and that is challenging for everyone seeking funding and support, nuclear or otherwise,” Brett Rampal, a nuclear energy expert who evaluates investment opportunities and consults for nuclear startups, told CNBC.

More than $300 billion poured into the venture capital industry in 2021. Rothrock expects to see more like $160 billion in 2022.

“I’m sure that some funds that pull back may never come back,” Rothrock said. But most investors who are putting money into a nuclear company understands that it will not be a quick investment, Rothrock told CNBC. “Entrepreneurs and investors at the level we are talking for nuclear are playing the long game, they have to. These projects will take time to mature and to generate real cash flows.”

Also, the Inflation Reduction Act that President Joe Biden signed into law in August, which includes $369 billion in funding to help combat climate change, has given nuclear investors a very significant positive signal, Rampal told CNBC.

“The IRA investment and production tax credits are not nuclear specific credits, they’re clean energy credits that nuclear is now considered a part of, and that sends a real important message to people and investors that would consider this space,” Rampal said. Similarly important, the European Union voted in July to keep some specific uses of nuclear energy (and natural gas) in its taxonomy of sustainable sources of energy in some circumstances, according to Rampal.

Total venture capital deal activity, according to Pitchbook data, for the last five years.

Chart courtesy Pitchbook.

The VC approach to nuclear

The nuclear power industry in the United States launched as a government project after the U.S. built the first atomic bombs during World War II. In 1951, a nuclear reactor produced electricity for the first time in Idaho at the National Reactor Testing Station, which would become the Idaho National Laboratory.

In the 1960s and 1970s, large conglomerates constructed big nuclear power plants, and those projects often ran over budget. “As a consequence, most of the utilities that undertook nuclear projects suffered ratings downgrades—sometimes several downgrades—during the construction phase,” according to a 2011 report from the Congressional Budget Office. Also, the Three Mile Island accident in 1979 raised public fears about safety and put a damper on construction.

Nuclear power generation in the United States peaked in 2012 with 104 operating reactors, according to the U.S. Energy Information Administration.

However, in recent years, private investors and venture capitalists have been putting money into nuclear startups, driven by a newfound sense of urgency to respond to climate change, as nuclear energy releases no greenhouse gases. There’s also the allure of funding underdog companies with huge upside.

The venture capital model is based on big bets — venture capitalists spread their money across many companies. Most are expected to fail or maybe break even, but if one or two companies get enormous, they more than cover the cost of all those losses. This is the investing model that built Silicon Valley stalwarts like Apple, Google and Tesla.

Some venture capitalists are especially excited about fusion. It’s the type of nuclear energy that powers stars, and it generates no long-lasting radioactive waste — but so far, it’s proven fiendishly difficult to create a lasting fusion reaction on Earth and impossible to generate enough energy for commercial generation.

“It’s far better than nuclear fission,” investor Vinod Khosla told CNBC in October. “It’s far better than coal and fossil fuels for sure. But it’s not ready. And we need to get it ready and build it.”

Khosla isn’t the only one. The private fusion industry has seen almost $5 billion in investment, according to the Fusion Industry Association, and more than half of that has been since since the second quarter of 2021, Andrew Holland, CEO of the association, told CNBC.

Installation of one of the giant 300-tonne magnets that will be used to confine the fusion reaction during the construction of the International Thermonuclear Experimental Reactor (ITER) on the Cadarache site on September 15, 2021.

Jean-marie Hosatte | Gamma-rapho | Getty Images

Others are excited about new advances in nuclear fission, the more traditional type of nuclear power based on breaking atomic nuclei apart, like DCVC founder Zachary Bogue, who invested in micro-nuclear reactor company Oklo.

“Advanced nuclear fission is a quintessential deep-tech venture capital problem,” Bogue told CNBC in September. There is technical and regulatory risk, but if those problems are solved, “there are just massive-scale returns … all of those elements are a perfect recipe for venture capital.”

While these bets seem expensive and risky compared with venture capital’s recent focus on software and consumer tech, they’ll still bring a faster and more agile approach than the old-line nuclear industry.

Take micro-reactors.

“These are going to be very expensive at first. But the goal is to find something that is a product that’s much more flexible, can go on to the grid in many more different places and serve different functions, and go off grid also,” explained MIT’s Parsons.

Similarly, fusion startups say they will generate energy much faster than government research projects like ITER, which has already been in progress since 2007.

This quick-turn approach to investment is spurring experimentation. New generations of nuclear reactors will have different sizes, different coolants and different fuels, explained Matt Crozat, senior director of policy development at the Nuclear Energy Institute. Some reactors are being designed for companies or communities in isolated areas, for example. Others are being made to operate at high temperatures for industrial processes, Crozat told CNBC.

“It really is expanding the range of what nuclear can mean,” Crozat said. Many won’t succeed, but time and the market will figure out what’s needed and what’s possible, he said.

Because venture investors are hungry for returns, this also spurs nuclear startups to chase interim revenue streams as they’re getting their big-bet technology up and running.

For example, Bill Gates‘ nuclear innovation company TerraPower is working on a demonstration of its advanced reactor in Wyoming in collaboration with the U.S. Department of Energy, but in the meantime is using its capacity to produce isotopes that are also used in medical research and treatments. Advanced nuclear company Kairos Power is developing the capacity to produce salt for molten salt reactors, both for itself and to sell to other companies.

‘A long history of broken promises’

But critics say venture capitalists are ignoring the troubled history of nuclear power as a business.

“Investors have forgotten or are ignoring the lessons from earlier generations of nuclear plants which cost 2 to 3 times as much to build and took years longer than was promised by the vendors,” Schlissel told CNBC. For instance, a project to put two new reactors on the Vogtle power plant in Georgia was originally estimated to be $14 billion and ended up costing more than $34 billion and taking six years longer to complete than expected, he said.

15 November 2022, Egypt, Scharm El Scheich: A nuclear symbol is displayed at a pavilion of the International Atomic Energy Agency IAEA at the UN Climate Summit COP27. Photo: Christophe Gateau/dpa

Picture Alliance | Picture Alliance | Getty Images

Harvard’s Oreskes says the nuclear industry is a “technology with a long history of broken promises,” and she is skeptical of the sudden investor interest.

“If you were my daughter, and you had a boyfriend that had made repeated promises to you over months, years, decades, constantly breaking them, I would say, ‘Do you really want to be with this guy?'”

She’s not categorically anti-nuclear, and supports the continued operation of nuclear power plants that already exist. But she’s particularly skeptical of fusion, which has been promised to be “just around the corner” for decades, and says this new round of investments in fusion “doesn’t pass the laugh test.”

Ultimately, the new crop of nuclear startups has to figure out how to create nuclear energy in a cost-competitive way, or nothing else matters, says Rothrock.

“More money means more startups and to me that means more shots on goal (improving odds of success),” he told CNBC.

“The issue in nuclear is economics. Plants are complicated and take a while to build. Some of these new startups are tackling those issues making them more simple and thus cheaper. No one will buy an expensive power plant, especially a nuclear plant. Economics drives it all.”

Continue Reading

Environment

Renewables generated 24.2% of US electricity in 2024 – EIA data

Published

on

By

Renewables generated 24.2% of US electricity in 2024 – EIA data

Renewables increased their output by almost 10% and provided nearly a quarter of US electrical generation in 2024, according to newly released US Energy Information Administration (EIA) data.

Solar was still No 1

Solar remained the US’s fastest-growing source of electricity in 2024. Utility-scale and “estimated” small-scale (e.g., rooftop) solar combined increased by 26.9% in 2024 compared to the same period in 2023, according to the SUN DAY Campaign, which reviewed EIA’s “Electric Power Monthly” report data.

Utility-scale solar thermal and photovoltaic expanded by 32%, while small-scale solar increased by 15.3%. Together, solar was nearly 7% (6.91%) of total US electrical generation for the year.

In December alone, electrical generation by utility-scale solar expanded by 42% compared to December 2023.

Advertisement – scroll for more content

Small-scale solar (systems <1 MW) accounted for 27.9% of all solar generation and provided 1.9% of the US electricity supply in 2024. In fact, small-scale solar PV generates over five times more electricity than utility-scale geothermal.

2024 renewables milestones

The electrical output of US wind farms in 2024 grew by 7.7% year-over-year. Wind remains the largest source of electrical generation among renewable energy sources, accounting for 10.3% of the US total.

Wind and solar combined provided more than 17.2% of US electrical generation during 2024. The mix of all renewables – wind, solar, hydropower, biomass, geothermal – provided 24.2% of total US electricity production in 2024 compared to 23.2% of electrical output a year earlier.

Between January and December, electrical generation by renewables grew by 9.6% compared to the same period the year before – nearly three times the growth rate of natural gas (3.3%) and over 10 times that of nuclear power (0.9%).

In December alone, electrical generation by renewables grew by 10.1% compared to December 2023.

Wind and solar together produced 15.9% more electricity than coal and came close to matching nuclear power’s share of total generation (17.2% vs. 17.8%).

The mix of renewables reinforced their position as the second largest source of electrical generation, behind only natural gas.

“Renewable energy sources now provide a quarter of the nation’s electricity,” said the SUN DAY Campaign’s executive director, Ken Bossong. “Consequently, the rash efforts of the Trump Administration to undermine wind, solar, and other renewables will have serious negative consequences for the nation’s electricity supply and the economy.”

Read more: Renewables provided 90% of new US capacity in 2024 – FERC


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla applies for ride-hailing service in California, but with human drivers

Published

on

By

Tesla applies for ride-hailing service in California, but with human drivers

Tesla has applied for a permit to operate a ride-hailing service in California, but it will be using human drivers rather than the promised robotaxi.

Last year, Tesla CEO Elon Musk claimed that Tesla would launch “unsupervised self-driving in Texas and California in Q2 2025.”

However, we suspected that this would not be “unsupervised self-driving’ in customer vehicles like Tesla has been promising since 2016, but an internal fleet with teleoperation support in a geo-fenced area for ride-hailing services, much like Waymo has been doing for years.

Sure enough, Musk confirmed last month that this was the plan for Austin in June. We describe this as a “moving of the goal post” for Tesla.

Advertisement – scroll for more content

With the focus on Austin in June, Tesla stopped talking about California, which was announced to happen at the same time as Texas last year.

Now, Bloomberg reports that Tesla has applied for a ride-hailing permit in California:

The electric vehicle manufacturer applied late last year for what’s known as a transportation charter-party carrier permit from the California Public Utilities Commission, according to documents viewed by Bloomberg. That classification means Tesla would own and control the fleet of vehicles.

But this application is for a regular ride-hailing service, like Uber, albeit for an internal fleet rather than vehicles operated by customers.

Tesla has yet to apply for a permit to operate driverless vehicles:

In its communications with California officials, Tesla discussed driver’s license information and drug-testing coordination, suggesting the company intends to use human drivers, at least initially. Tesla is applying for the same type of permit used by Waymo, Alphabet Inc.’s robotaxi business. While Tesla has approval to test autonomous vehicles with a safety driver in California, it doesn’t have, nor has applied for, a driverless testing or deployment permit from the state’s Department of Motor Vehicles, according to a spokesperson.

Musk claimed that he believes Tesla will be able to achieve “unsupervised self-driving” in California by “the end of the year”, but he has claimed that every year for the past decade.

The latest available data shows that Tesla’s Full Self-Driving system is achieving about 500 miles between critical disengagement. Tesla has stated that it believes it needs to reach 700,000 miles between critical disengagement to be safer than humans.

Electrek’s Take

This is just a step for Tesla to test ride-hailing services ahead of autonomy. A nothing burger, really, since ride-hailing has obviously been solved already by several companies, Lyft, Uber, Didi, etc.

What needs to be solved is autonomous driving.

As I have been saying for the last year, I am sure Tesla will be able to launch an internal fleet with teleoperation support in a geo-fenced area for a ride-hailing service in California later this year like it plans to do in Austin in June, but that’s nowhere near what Tesla promised since 2016.

It’s a moving of the goal post, and it’s basically just proving that Tesla is able to do something similar to Waymo – 5 years later.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla drivers are racking up fines using FSD in China

Published

on

By

Tesla drivers are racking up fines using FSD in China

Tesla drivers in China are using the new Full Self-Driving update and are racking up fines as the system drives in bike lanes and makes illegal turns.

As we reported earlier this week, Tesla has started to release advanced driver-assist features sold under its Full Self-Driving (FSD) package in China.

The feature is called “Autopilot automatic assisted driving on urban roads” as Tesla seems more cautious about using the term “Full Self-Driving” in China, but it is a feature known for being in the FSD package everywhere else.

Tesla has been facing a lot of issues in releasing FSD features in China. The automaker has been limited in its neural net training due to restrictions about data coming in and out of the country, and it found it difficult to adapt to regulations regarding bus lanes and other China-specific road rules.

Advertisement – scroll for more content

CEO Elon Musk warned that FSD in China would be a problem during Tesla’s earnings call last month due to the different rules. He mentioned bus lanes as an example:

By the way, were about the biggest challenges in making FSD work in China is the bus lanes are very complicated. And there’s like literally like hours of the day that you’re allowed to be there and not be there. And then if you accidentally go in that bus lane at the wrong time, you get an automatic ticket instantly. So, it’s kind of a big deal, bus lanes in China.

The automated ticketing system is not just for bus lanes and Tesla owners are learning about it the hard way.

Tesla owners have been testing out the features in live streams on social media and some of them are reporting getting numerous tickets for using FSD.

For example, this Tesla driver received 7 tickets in the space of a single drive because the FSD drove in bike lanes and made illegal maneuvers:

Car News China tracked several live streams and customer feedback on Chinese social media, and the consensus appears to be that it’s “pretty good, but with lots of bugs”.

The drivers are particularly impressed with how “natural” FSD drives, but they also noted that it still

Where the system lacks is the understanding of local traffic rules (such as no use of shoulder/bike lanes on turns, similar to the bus lane rules that Elon talked about in the most recent earnings call) and the sporadic use of wrong lanes (e.g. going straight in a left or right turn only lane) or navigation showing the vehicle in one lane when in fact it’s in another or wrong perception of objects (red balloons as traffic lights). Many of the live streams counted the number of traffic violations from the vehicle and the number of points that would have been taken off or licenses suspended (12 points = suspension) as a result.

Chinese media websites are now getting flooded with Tesla vehicles running red traffic lights, failing to recognize green lights, and driving on restricted lanes, like the video above.

The report also highlights how Tesla is facing strong competition in ADAS in China, with competitors like Nio, Xpeng, BYD, and others launching competitive products, which is not necessarily the case in other markets for Tesla.

Electrek’s Take

I feel like this is likely going to result in bad PR for Tesla in China. You can’t have drivers losing their licenses because FSD doesn’t recognize bike lanes.

Now, of course, Tesla will say that the driver remains responsible, but I don’t know how good Tesla’s messaging is on that front in China.

It’s going to be an interesting story to track in the coming months.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending