Connect with us

Published

on

U.S. fusion breakthrough could change world's energy future

The nuclear fusion breakthrough heralded on Tuesday was a historic event, culminating decades of research.

At the same time, fusion power will not be contributing electricity to any power grid for at least a decade, according to most industry watchers. To get there, there will have to be many more technical breakthroughs beyond what was celebrated on Tuesday — and the money to fund them.

Just after 1 a.m. on Monday, Dec. 5, researchers at the Lawrence Livermore National Laboratory in California executed a successful experiment to produce more energy from a nuclear fusion reaction than went into the lasers used to power the reaction.

“We got out 3.15 megajoules, we put in 2.05 megajoules in the laser,” said Mark Herrmann, a program director at Lawrence Livermore, on Tuesday. “That’s never been done before in any fusion laboratory anywhere in the world. So it’s super exciting.”

In a technical panel discussion after the main press announcement on Tuesday, scientists on the team recounted their reactions on learning the news.

Tammy Ma, a laser-plasma physicist at the lab, was waiting in an airport when her boss called her. “I burst into tears. I was jumping up and down in the waiting area, the crazy person.”

It took about 300 megajoules of energy from the electricity grid to fire the laser that was used in the experiment, said Herrmann on Tuesday. That’s equivalent to what is included in about two-and-a-half gallons of gasoline.

All of that energy went into the laser fusion reaction that showed net gain of about 1.1 megajoules — enough energy to boil a teakettle maybe two or three times.

“This is a science achievement, not a practical one,” Omar A. Hurricane, a chief scientist at Lawrence Livermore, told CNBC.

But the amount of energy isn’t the point. “The laser wasn’t designed to be efficient. The laser was designed to give us as much juice as possible to make this incredible conditions possible,” Herrmann said. “So there are many, many steps that would have to be made in order to get to an inertial fusion as an energy source.”

That’s partly because National Ignition Facility, where the demonstration took place, is 20 years old, and was constructed using technological components made in the 1980s and 1990s. Laser technology has progressed significantly since then.

The reason for the celebration was simply that energy was created at all.

“It’s exciting because it proves that fusion can work, and it opens the floodgates to further interest, investment, and innovation toward turning fusion into a power source,” said Arthur Turrell, a plasma physicist and the author of The Star Builders.

(L-R) US Under Secretary of Energy for Nuclear Security, Jill Hruby; US Energy Secretary, Jennifer Granholm; Director of the Lawrence Livermore National Laboratory, Kimberly Budil; White House Office of Science and Technology Policy Director, Arati Prabhakar; and National Nuclear Security Administration Deputy Administrator for Defense Programs, Marvin Adams hold a press conference to announce a major milestone in nuclear fusion research, at the US Department of Energy in Washington, DC on December 13, 2022. Researchers have achieved a breakthrough regarding nuclear fusion, a technology seen as a possible revolutionary alternative power source.

Olivier Douliery | Afp | Getty Images

The industry will need a whole lot more firsts

Progress is happening fast, but the scope of the problem is immense.

A little more than a year ago, in August 2021, the same laboratory had another breakthrough that Hurricane billed as “a Wright Brothers moment.” That experiment achieved fusion ignition in a controlled environment for the first time, but the total energy that was put into the reaction was less than what came out.

“A plasma is said to ignite when the energy gain due to fusion reactions exceeds all energy losses, resulting in a rapid escalation of temperature, pressure, and fusion energy yield. Previously this had only been achieved in the detonation of nuclear weapons,” explained Pravesh Patel, the scientific director of the fusion startup Focused Energy and a former scientist at Lawrence Livermore.

In that 2021 experiment, the energy gain was 0.73. The Dec. 5 experiment was the first time an energy gain over 1.0 was achieved — specifically, an energy gain of 1.5.

“Getting anything above 1x is everything psychologically because it shows fusion can be a (net) source of energy!” Turrell told CNBC. “To put it another way, it is this moment when >1x is achieved that will make it into the history books.”

An artists’ rendering of the 192 laser beams shooting to the center of the target chamber at the National Ignition Facility.

Courtesy Damien Jemison at the Lawrence Livermore National Laboratory

Patel expects to see energy gain of 4 or 5 coming out of the team at Lawrence Livermore eventually. But to make commercial fusion with lasers will require an energy gain of approximately 100x, Patel said.

To get to that level will require new facilities and new technology developments of component parts, such as efficient diode-pumped lasers.

“That will need progress in so-called ‘advanced concepts’ such as fast ignition or shock ignition, that are designed for high gain. Those concepts require new facilities to be built, so a breakthrough there will take until later this decade,” Patel said.

Moritz von der Linden, CEO of startup Marvel Fusion, also emphasized the importance of new lasers.

“Newest generation laser systems at other or new facilities must show that they can easily fire 10 laser pulses per second with high energies. Also, the targets must have an efficient energy absorption rate and be mass producible,” Linden told CNBC in a statement. “Only with optimized targets and latest-generation laser systems is it possible to show a net energy gain — the next truly revolutionary milestone. That will be one of the toughest engineering challenges imaginable to mankind.”

Here, the preamplifier module increases the laser energy as it heads toward the target chamber at the National Ignition Facitility.

Photo courtesy Damien Jemison at Lawrence Livermore National Laboratory

Funding will have to increase dramatically

While it will be more than a decade until fusion is commercialized, investors are already pouring money into the sector: The private fusion industry has seen almost $5 billion in investment, according to the industry trade group, the Fusion Industry Association, and more than half of that has been since since the second quarter of 2021.

Most of that investment gone toward a different approach called magnetic fusion, which uses a donut-shaped device called a tokamak. Only about $180 million has gone into inertial fusion, the approach that typically uses lasers, according to Fusion Industry Association CEO Andrew Holland.

Regardless of the approach, Tuesday’s announcement is significant for the industry as a whole, according to Dennis Whyte, who works at MIT and cofounded Commonwealth Fusion Systems (CFS), a leading startup working with tokamak-based fusion that’s raised more than $2 billion.

“While the technology readiness of tokamaks is higher for energy systems, the breakthrough announced yesterday was a scientific one confirming that net energy can be produced by the fusion fuels,” Whyte told CNBC. “So this is an important result for all fusion endeavors.”

In September, the Department of Energy announced $50 million will go toward private fusion companies in public-private partnerships.

That funding is a critical step for fusion to be commercial by the late 2030s, where most fusion industry watchers are aiming, Patel told CNBC, but it is not enough. There needs to be between 10 and 100 times as much investment to “meaningfully accelerate the time it will take to commercialize fusion and reduce our dependency on fossil fuels,” Patel told CNBC.

Perhaps the greatest criticism of fusion is that it will take too long to come online to be helpful in responding to climate change.

But industry participants believe that bold action can succeed in time.

“In March, the White House agreed and launched a program to work together with the private sector to shoot for a ‘pilot plant’ with a bold decadal plan,” Whyte told CNBC. “Why this timeline?  Well if you work backwards from 2050, the math tells you when you need the pilot plant if you want fusion to play a role in combatting climate change, based on the scale-up times that will be required. This will be hard, but worthwhile to attempt.”

How nuclear power is changing

Continue Reading

Environment

Wait, is JackRabbit about to unveil a two-person e-bike?

Published

on

By

Wait, is JackRabbit about to unveil a two-person e-bike?

Guys, I think JackRabbit has a two-person e-bike coming, errr… electric scooter? I’m not really sure what you call this thing, but it looks wild.

I recently took a short break from riding and writing e-bikes all day to doomscroll social media, which basically just feeds me more bike content all day. And what popped up in my feed other than this peculiar thing?

Sure, it’s obscured by a surfboard mount, but there’s no getting around the fact that it looks like this shiny new silver JackRabbit isn’t quite as mini as we’re used to from the famously “micro and proud” micro e-bike maker. And there’s one other detail that’s also apparent if you look closely.

It’s a two-seater.

Advertisement – scroll for more content

I think this video was meant to be something of a teaser from JackRabbit, but it might as well be a near-unveiling.

In other parts of the same teaser video, almost the entire bike is visible. From those other shots, we can see that it’s still not quite an e-bike in the traditional “comes with pedals” sense.

Instead, JackRabbit’s somehow simultaneously chunky yet tiny folding footpegs are still visible. The wide handlebars also appear to have JackRabbit’s unique 90º turning handlebar lock, which allows the bars to spin sideways when parked. You can even see it in use in the images below.

On JackRabbit’s smaller models, that trick makes the entire bike just 7″ (17 cm) wide, making it easy to store behind a couch or under a dorm bed. Here, it’s unclear if it will be quite as narrow, but it should still make this a conveniently stowable ride.

It’s hard to tell, but it looks like the wheels might be larger than JackRabbit’s standard 20″ size, helping give it the “full-sized bike” qualifier that JackRabbit claims in the teaser video. The perspective is confusing, as the front wheel looks closer to 24″ or 26″, yet the rear wheel still disappears behind that surfboard. Could this be the first mullet JackRabbit? (Not to be confused with a JackRabbit mullet, which is a hairstyle that would pair well with what is likely the most free-spirited of all the e-bike brands out there.)

There may also be different saddle options, since we can clearly see what looks to be a conventional bicycle saddle in some images and a longer, stretched-out, banana seat-style saddle in the other shots.

We can also see two of JackRabbit’s “Rangebuster” batteries in the frame, a larger capacity pack developed by the company with a claimed 24 miles (39 km) range per battery, meaning this model might have a range of nearly 50 miles (80 km).

But there’s a lot we still don’t know. Will it get the powerfully torquey motor from the JackRabbit XG Pro? Will there be a pedal option? Will my wife agree to ride this thing with me? These are yet questions without answers, people.

One thing is for sure, though. JackRabbit says all will be revealed soon. “Everything you know about JackRabbit is changing on 8/12,” writes the company. (That’s next week, for any Europeans in the room.)

I don’t know about you, but I’m suddenly very much looking forward to Tuesday.

Electrek’s Take

I don’t know what to make of this, but I’m excited. I’ve been a JackRabbit fan since before the OG was even the OG. It’s just such a fun and free-spirited brand.

If the e-bike market was high school, JackRabbit would be that quirky, non-conformist kid that everyone kind of wondered about but who was obviously having more fun than anyone else. It’s the e-bike that just puts its hands over its ears and goes “La la la la…” when you try to tell ’em that it’s not actually an e-bike.

It’s weird. It’s wild. But it works. And being a JackRabbit fan is a hill I’m prepared to die on – though admittedly, you’d be well advised to tackle that hill on one of the Pro models instead of the OG2 for the extra power and torque.

My wife might give me a funny look every time I whip out my JackRabbit, but I still love riding it. And so it’s with that level of excitement and curiosity that I wonder what the brand that refuses to be defined is up to with this new “full-sized bike” reveal they’ve got coming. The ability to carry two riders sounds great, especially since the thing still looks so small and portable.

Of course, the over-priced elephant in the room is that JackRabbit’s Achilles heel is its pricing. These things aren’t cheap. The entry-level OG2 model only starts at $1,249, and the flagship XG Pro is almost double that. Granted, it’s an awesome bike, and one that I was able to use to tow a kayak down the road for miles, then put on top of that kayak and paddle through the Gulf of Mexico for miles (something of which I don’t know of any other e-bike that can do). But that makes me wonder what yet a bigger and presumably more impressive JackRabbit will cost.

But hey, I’m so here for this!

If you want to see the full teaser video, check it out below.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tiny motor, massive power. New e-bike drive triples the torque

Published

on

By

Tiny motor, massive power. New e-bike drive triples the torque

Small package, big impact: that’s the story behind Maxon’s new Air S mid‑drive motor. On the surface, it looks almost identical to the original Air: sleek, nearly invisible, and designed to disappear into your bike’s frame. But beneath this minimalist exterior is a dramatic leap in capability.

Now the torque has nearly tripled, soaring to 90 Nm, all while keeping total system weight to just 3.8 kg, (8.4 lb) including the motor and 400 Wh battery.

We’ve seen smaller motors popping up here and there lately, but not mid-drives quite like this.

Just 100 g (0.22 lb) heavier than the original Air yet tripling the performance, the Air S delivers up to 90 Nm of torque and 620 W of peak power, catapulting it into the realm of powerful mid‑drive motors built for demanding trail performance. That’s the same torque you’d expect from some of the strongest mid‑drive motors in modern electric mountain biking, yet in a package that’s still feather‑light.

Advertisement – scroll for more content

Why it matters for lightweight e-bikes

As New Atlas recently pointed out, these motors are enabling super lightweight builds that previously weren’t possible: Bikes using the Air S, like the Thömus Lightrider E‑Max or Instinctiv’s Ocelot, tip the scales at barely 15  kg (33 lb), far lighter than typical full-suspension e‑MTBs, thanks largely to the slender motor and integrated battery design.

With torque now hitting 90 Nm, up from just that meager 30 Nm on the original, the Air S now delivers serious climbing power without the bulk. This brings light-assist bikes into full‑power territory, making acceleration and steep terrain feel effortless. Previously, ultra-lightweight e-bikes made serious compromises on power to achieve that level of near weightlessness. But now, they can actually compete on power, too.

Maxon’s unique split‑cylinder configuration also allows the motor to remain visually discreet. Combined with frame‑integrated batteries (400 Wh to start, with a 600 Wh option reportedly on the way), the system preserves clean lines and low weight. Many e-bikes sporting the motor simply won’t even look like e-bikes to the casual observer.

With the Air S, Maxon has struck a rare balance: ultralight design without compromise on torque. It catapults lightweight e-bikes into a new performance bracket, granting riders both agility and power. If you’ve long dreamed of an e-bike that feels like a mountain goat on the climb yet disappears under 16 kg, the Air S is probably your motor.

The trail-ready future is lighter, leaner, and looks ready to race uphill.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

The oddly personal truth about ADAS: self-driving cars are like running shoes

Published

on

By

The oddly personal truth about ADAS: self-driving cars are like running shoes

There you are, motoring along in your Volvo XC90 PHEV with the Pilot Assist engaged alongside a big 18-wheeler at a comfortable 70 mph cruise when the interstate starts to slowly sweep left. From the drivers’ seat, that semi on your right looks awfully close. As the steering wheel turns itself in your hand, you start to wonder if that truck’s a bit too close. The car isn’t doing anything wrong, but it’s too close for your comfort and you give the wheel a little nudge to hug the inside of the lane just a bit more.

These deeply personal preferences are tough to quantify, and highlight a simple fact about Advanced Driver Assistance Systems (ADAS) that the industry at-large hasn’t yet to come to terms with: when it comes to self-driving cars, one size does not fit all.

The Volvo experience I outlined above was very real, happening just as the wife and I were arguing about the relative merits of our very different choice in running shoes. She prefers the supportive, cushion-y ride of the HOKA Clifton 9s, which I’ve become convinced are The Devil™, preferring instead the zero-lift, no-cushion feel of my Xero Prio runners. The intervention with the Volvo interrupted that particular argument and started another. Namely, the one about why I had chosen that moment to “interfere” with the Pilot Assist.

“It was too close to that truck,” I explained. “Freaked me out.”

Advertisement – scroll for more content

“That’s how I feel in the Honda,” she said. “I’m always afraid that it’s going to try and put me into oncoming traffic.”

That’s when the idea for this post came to me. Because, as a car brand, it’s really not possible to just say that your car has ADAS or doesn’t have ADAS in a binary sense. That’s because these systems are not just proprietary to a given brand, they can vary from vehicle-to-vehicle within that brand, and each one can have distinct lane centering behavior, steering feel, lane change aggressiveness, braking distances, timing for its hand-off warnings, and probably a bunch of other stuff that I haven’t even thought of depending on what kind of cameras, sensors, and software the specific vehicle you are in is equipped with.

It’s a bit of a mess, in other words.

Opinion: Honda Sensing gets it right


I first experienced Honda’s ADAS in 2014, driving a then-new CR-V between Chicago and Bay Harbor, Michigan for an Acura press drive. Even in its early generations, I was impressed with the way it handled stop-and-go traffic, the way it guided you through turns, but didn’t do the turning for you, and the speed and intensity it used in braking very much mirrored my own.

Last month, I had a chance to test out the 2025 Honda Civic Sport Touring Hybrid for a week on Cape Cod. I picked the car up at PreFlight Parking outside Boston Logan, jammed it with luggage, and immediately hit heavy traffic, where the Honda Sensing Low-Speed Follow function took me right back to 2014, ratatouille-style, when my experience in that car had led me to believe that self-driving cars were right around the corner.

In the decade-plus since experiencing that first autonomous Acura, I’ve had the chance to experience Ford BlueCruise, Tesla Autopilot and FSD, and Mercedes-Benz DRIVE PILOT. And all, interestingly enough, in and around the Circuit of the Americas in Austin at one time or another over my three years of hosting Electrify Expo events there.

Each different OEMs’ system had its strengths and quirks. I remember Mercedes DRIVE PILOT as impressively precise, even clinical. The Ford system faded into memory. I couldn’t tell you anything about it, which is probably high praise. The Tesla systems, though, stood out — but for all the wrong reasons. Lane changes came too quickly, it accelerated too late, and too aggressively, and I often found myself bracing for collisions that (in fairness) never came.

More than once in those years I’ve wondered if maybe I’d just got it wrong back in 2014. That the tech was so new, and I had been so wow’ed by it initially, that I had got swept up in the hype of self-driving cars … but that drive in my wife’s XC90, back-to-back as it was with the Civic Hybrid, showed me that wasn’t it. Instead, I just didn’t like the way those other cars drove. Just like I don’t like the way HOKAs feel. And, just like my wife isn’t wrong for liking her gross marshmallow shoes (probably), I’m not wrong for preferring a more restrained digital co-pilot.

It’s a matter of fit, not fact — and that’s going to be a tough sell.

Everyone but me is wrong


Classic Carlin bit.

As the great George Carlin once asked, “Have you ever noticed that anyone who is driving slower than you is an idiot, and anyone driving faster than you is a maniac?”

ADAS systems live squarely in that same subjective space occupied by other drivers. If the bots brake too hard, steer too sharply, or get too close to the car head before changing lanes, they might not be technically doing anything wrong, but they’re maniacs – and right now, there’s no real way to know how one car’s ADAS is going to behave until you’ve spent some significant time behind the wheel. Like, “Uh-oh. I bought a thing and I hate it,” amounts of time.

That’s a problem for both buyers and sellers (to say nothing of manufacturers and software developers), because why would you risk demonstrating a system that might scare someone? How do you sell “confidence” and “convenience” when what feels confident and convenient to one driver feels reckless to another, and milquetoast to a third?

Lucky for you guys, I have a solution.

Jojo’s ADAS scorecard *


System Lane centering bias Lane change distance (car lengths) Follow distance (default) Braking force (max Gs) Hands-off time allowed Overall “feel”
Ford BlueCruise Centered ~3.5 Moderate 0.30 G Medium Stable
Honda Sensing Slight left bias ~2.5 Safe 0.35 G Short Balanced
Mercedes-Benz
DRIVE PILOT
Centered ~3.5 Moderate 0.40 G Long Confident
Tesla Autopilot Centered ~1.5 Close 0.45 G Long (varies) Aggressive
Volvo Pilot Assist Slight right bias ~3.0 Moderate 0.30 G Moderate Cautious

NOTE: THESE ARE NOT REAL VALUES

That asterisk (*) is there because these are completely made up, imaginary values. They’re simply there to illustrate one way for manufacturers and dealers to share objective, quantifiable information about how their different ADAS systems behave. If it’s done right, it might help a car shopper get a better feel for how their next car might drive, and prevent them from spending their hard-earned cash on a car that drives like an idiot. Or a maniac.

That’s my take, anyway – what’s yours? Head down to the comments and let us know what values you’d like to see represented on an ADAS scorecard, and how much you’d be willing to base your next car buying decision on how it drives.

As for me, my X handle might be VolvoJo, but if I’m shopping for a car that’s going to drive me instead of the other way around, I might have to see if “HondaJo” is available.

Original content from Electrek.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending