Connect with us

Published

on

A dust devil looks a bit like a tornado, but is weaker and rarely lasts more than about a minute.

It is a twisting column of warmed air scooting across sun-heated ground, made visible by the dust that it lofts upwards. Although usually benign, occasionally dust devils can kill.

Dust devils have been known to appear on Mars since the 1970s. They have been observed both from the ground and from orbit.

The more dust in the Martian atmosphere, the warmer and more agitated it becomes, and this can escalate into a global dust storm.

When the dust settles, it can coat and disable the solar panels that are essential for many of the instruments we’ve landed on the planet.

There’s a lot we don’t know about how these devils function. But new research, published this week in Nature Communications, has recorded what dust devils sound like – giving fresh insights into how they operate.

But it also raises questions about how future astronauts would detect and interpret sounds on the red planet.

There has been a vast amount of erosion on Mars since the last rivers and lakes vanished, including at the landing sites of both Nasa’s current rovers Curiosity and Perseverance.

Although the erosive power of an individual dust devil is tiny, a billion years worth of dust devils could potentially have worn away kilometres of rock.

There are thus many reasons for wanting to better understand how dust devils function.

And we now know what a Martian dust devil sounds like thanks to the new study led by Naomi Murdoch of Toulouse University in France.

Many passing dust devils have been imaged by cameras on Mars landers and rovers, but Murdoch and her team report a dust devil that luckily passed exactly over the Perseverance rover on September 27, 2021, which was on the floor of Jezero crater.

The rover’s masthead camera, named SuperCam, includes a microphone, and this recorded the sound of the wind rising and falling as the dust devil passed over.

In detail, the wind noise rose when the leading wall of the vortex arrived, followed by a lull representing the calm air in the eye of the vortex, before a second episode of wind noise as the trailing wall of the vortex passed over.

This took less than ten seconds, and you can hear the sound recording here(https://jirafeau.isae-supaero.fr/f.php?h=2JWSkdJR&p=1) (turn your volume to max). Other sensors gave information too. They showed that the pressure fell to a minimum between the two bursts of wind noise – which to me is consistent with sucking rather than blowing – and also recorded impacts of individual dust grains onto the rover.

The dust devil was about 25 metres in diameter, at least 118 metres tall, and was tracking across the ground at about five metres per second.

The maximum wind speed in the rotating vortex was probably just under 11 metres per second, equating to a “fresh” to “strong” breeze on Earth.

Did it really sound like that? Listening to a recording purporting to be the sound of Martian wind is all very well, but is this really what we would hear if we were there ourselves? The first thing to note is that this does genuinely originate as “real sound”, unlike other data such as images or radio signals turned into sound (a process known as sonification), such as the so-called sound of two black holes colliding or radio noise from from Venus’s atmosphere.

The dust devil audio file contains actual sound waves picked up by a microphone on Mars.

There the atmosphere is much thinner than on Earth (Martian surface pressure is less than a hundredth of ours), so the high frequency component of sound hardly carries (scientists say it’s “attenuated”).

The result is that the wind sounds much lower in pitch than a similar wind on Earth.

The only other planetary body from which we have genuine sound recordings is Venus, where in 1982 two Soviet “Venera” landers recorded wind and lander operation noises.

However, if you were on Mars you could never hear the wind directly with your own ears.

If you were foolish enough to expose your ears to Mars’s atmosphere, the low external pressure would cause your eardrums to burst, and you would be instantly deaf as well as having no air to breathe.

If you were to go outside in a pressurised spacesuit (a much more sensible idea), what you would hear would depend on how well the sound waves were transmitted through the solid shell of your helmet, and then on how these were turned back into sound waves in the air inside your helmet.

In other words, you would hear a distorted version of what an external microphone would pick up. Imagine walking round on Earth with your head inside a goldfish bowl and you’ll get part of the idea.

If future human explorers on Mars want to hear what’s going on in the external environment, I suspect they will rely on a suit-mounted microphone feeding to wireless ear buds, although I can’t find any evidence that that this has yet been factored into Mars suit design.

This all boils down to a recording from external microphone being the best way to represent sounds on Mars, or indeed any other planet that has an atmosphere.

If you want to hear some more sounds from Mars, NASA has a collection of audio recordings you can listen to.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

SpaceX Rocket Launches 28 Starlink Satellites, Makes 26th Booster Reuse

Published

on

By

SpaceX Rocket Launches 28 Starlink Satellites, Makes 26th Booster Reuse

SpaceX launched its next batch of Starlink V2 Mini satellites on a Falcon 9 rocket launch from Cape Canaveral Space Force Station shortly before midnight on Tuesday. The Starlink 10-29 mission added another 28 satellites into the low Earth orbit megaconstellation. A SpaceX Falcon 9 rocket lifted off at 11:37 p.m. EDT (0337 GMT on July 30) from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station in Florida.

After a nine minute climb into space, the 28 Starlink broadband internet satellites (group 10-29) were on track to be deployed into their intended orbit. After payload deployment, the Falcon 9 first stage separated and successfully landed on the ocean-going droneship “Just Read the Instructions”, positioned in the Atlantic Ocean.

This mission notably marked the 26th flight for the Falcon 9’s first stage, booster B1069, which has been a part of missions include diverse payloads such as CRS-24, Eutelsat HOTBIRD 13F, OneWeb 1, SES-18 and SES-19, alongside 22 other Starlink deployments.

According to satellite tracker Jonathan McDowell, the Starlink constellation now includes over 8,050 active satellites (out of more than 9,300 launched since 2018). The growing fleet is intended to provide high-speed internet worldwide, and each launch like this one adds capacity and coverage. The mission also highlights SpaceX’s extraordinary launch cadence and technical progress.

It was the company’s 96th launch of 2025, reflecting a packed schedule and intense operational tempo. Two more missions were scheduled later that week — another Starlink launch from California and NASA’s Crew-11 flight to the International Space Station. The repeated reuse of boosters (as evidenced by B1069’s 26 flights) is central to lowering costs and sustaining this ambitious cadence.

Continue Reading

Science

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Published

on

By

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Hundreds waited at the ready outside the Smithsonian’s National Air and Space Museum on Monday (July 28), when “the doors opened for access to five featured and newly renovated galleries that capture the history, contemporary status, and futuristic vision of aviation and space exploration. These refurbished spaces showcase a mix of historic and high-tech artifacts such as John Glenn’s “Friendship 7” capsule, pieces of a SpaceX Falcon 9 rocket, and a 3D-printed Mars habitat. Visitors were among the first to experience a sweeping display of innovation, housed within the museum’s revitalised main building on the National Mall in Washington, D.C.

Smithsonian’s $900M Overhaul Brings Futuristic Space Exhibits and Aviation History to Life

As per a Smithsonian statement, the reimagined exhibits are part of a $900 million full-building transformation launched in 2018, scheduled for completion by July 2026—the museum’s 50th anniversary. This phase marks the second group of reopened galleries since the start of 2022. After a three-year closure, the north entrance opened for the first time, leading visitors through a newly wing-shaped vestibule and into “Boeing Milestones of Flight Hall”, now with improved lighting, digital screens, and iconic artefacts.

Next to it, a new “Futures in Space” gallery showcases domestic exhibitions from private space companies like SpaceX, Blue Origin, Virgin Galactic, and Axiom Space. Rather than a chronological or program-based layout, the gallery explores philosophical and practical questions about space: Who decides who goes? Why do we venture out? What will we do once we arrive? The immersive layout blends historical items, contemporary designs, and even pop culture references.

The museum has reopened galleries such as “Barron Hilton Pioneers of Flight”, “World War I: The Birth of Military Aviation”, and “Allan and Shelley Holt Innovations Gallery”, and the upgraded Lockheed Martin IMAX Theatre, praised as educational and inspirational.

Despite free entry, the Smithsonian Museum reopened to more than 6,000 guests, who must pick up timed-entry passes in order to better manage crowd flow.

Continue Reading

Science

NASA’s Solar Observatory Sees Two Eclipses in One Day

Published

on

By

NASA’s Solar Observatory Sees Two Eclipses in One Day

NASA’s Solar Dynamics Observatory (SDO) has witnessed and recorded an unprecedented phenomenon of two solar eclipses in one day on July 25, 2025. These two eclipses took place only hours apart that day, and were photographed by SDO instruments pointed up and away from the Sun in geosynchronous orbit. First, around 2:45 UTC, the Moon passed between SDO and the Sun. Then, starting at about 6:30 UTC, Earth itself eclipsed the Sun from SDO’s point of view, with the Sun disappearing behind our planet shortly before 8:00 UTC. Since launching in 2010, SDO has continuously monitored the Sun’s activity, from solar flares to magnetic fields, helping forecasters predict space weather.

Moon Transit

According to NASA, SDO orbits Earth in a high geosynchronous orbit, so it has an almost constant view of the Sun. On July 25, this vantage point captured a partial solar eclipse as the Moon passed between the spacecraft and the Sun. NASA’s mission team had predicted this “lunar transit” would cover about 62% of the solar disk. Indeed, the Moon’s silhouette moved slowly across the Sun (around 2:45–3:35 UTC), blocking roughly two-thirds of the bright disk at maximum. The observatory’s ultraviolet telescope (AIA) recorded the event, revealing the Sun’s lower atmosphere and coronal loops around the sharply defined lunar edge. This transit was the deepest lunar eclipse SDO saw in 2025.

Earth’s Eclipse from Space

Hours later, on the same day, Earth itself passed between SDO and the Sun. Beginning around 6:30 UTC on July 25, our planet fully blocked the observatory’s view of the solar disk. This occurred during SDO’s regular eclipse season (a roughly three-week period twice each year when Earth’s orbit crosses the satellite’s line of sight). The total eclipse lasted until shortly before 8:00 UTC. In SDO’s images, Earth’s shadow has a fuzzy edge because our atmosphere scatters sunlight, in contrast to the Moon’s crisp eclipse.

Continue Reading

Trending