Connect with us

Published

on

Nuclear fusion holds huge promise as a source of clean, abundant energy that could power the world. Now, fusion researchers at a national laboratory in the US have achieved something physicists have been working towards for decades, a process known as “ignition”.

This step involves getting more energy out from fusion reactions than is put in by a laser.

But just how close are we to producing energy from fusion that can power people’s homes? While the ignition is only a proof of principle and the first step in a very long process, other developments are also in the works and together they could spark renewed enthusiasm for making fusion a practical reality.

First, it’s important to recognise that the latest result is indeed a real milestone.

The researchers at the National Ignition Facility (NIF) in California fired the world’s biggest laser at a capsule filled with hydrogen fuel, causing it to implode and starting fusion reactions that mimic what happens in the Sun.

The fusion energy released by the implosion was more than that put in by the laser, a massive achievement given that, just a few years ago, the NIF laser could only get out about a thousandth of the energy it put in.

However, around 10,000 times more energy had to be put into the laser than it produced in light energy.

It can only be run once a day. And every target is so exquisitely designed that each one costs thousands of dollars.

To produce a reactor for a working power station, you would need a laser that produced light energy at much greater efficiency (a few tens of percent) and shot targets successfully at ten times per second, with each target costing a few pence or so.

In addition, each laser shot would need to produce many times – perhaps 100 times – more energy out than was put in.

Very little research has actually been done on fusion “reactors”, where neutrons from the reactions would help drive a steam turbine to produce electricity. But there are other reasons for hope.

Firstly, while NIF has taken more than a decade to achieve ignition, during the same period, scientists have independently developed new lasers.

These use electronic devices called diodes to transfer energy to the laser and are very, very efficient, converting a good fraction of the electricity from the grid into laser light.

Prototype versions of such lasers have been proven to work at the rates of 10 times per second, which would be required for them to be useful in fusion.

These lasers are not yet of the size needed for fusion, but the technology is proven, and the UK leads in this type of research.

Also, the approach to fusion used by the scientists at NIF has some well-known, inherent inefficiencies, and there are several other ideas that could be much more effective.

Nobody is absolutely certain that these other ideas would work, as they have their own unique problems, and have never been tried at scale.

To do so would require hundreds of millions of dollars of investment for each of them with no guarantee of success (otherwise it would not be research).

However, there is now a wind of change blowing: the private sector.

Various funds with a very long-term outlook have started to invest in new start-up firms that are touting fusion as a commercially viable source of energy.

Given that it was private industry that has revolutionised the electric car market (and the rocket industry), maybe that sector could also give fusion the “kick” it requires.

Private firms can work a lot faster than governments, and pivot quickly to adopt new ideas when required.

Estimates of the total private funding in the sector now stand in excess of $2 billion (roughly Rs. 16,500 crore), peanuts compared with the $2 trillion (roughly Rs. 165 lakh crore) in revenue produced by the oil and gas industry each year.

There is still a lot of room in the marketplace for the high-risk, high-pay-off players.

The latest results show that the basic science works: the laws of physics do not prevent us from achieving the goal of unlimited clean energy from fusion.

The problems are technical and economic. While fusion may be too far off to solve matters on the timescale of a decade or two, the latest advance will at least bolster enthusiasm about solving one of humanity’s grand challenges.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

Published

on

By

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

NASA scientists might soon be able to forecast volcanic eruptions by monitoring how trees respond from space. Now, in a new collaboration with the Smithsonian Institution, they have discovered that tree leaves grow lusher and greener when previously dormant volcanic carbon dioxide seeps up from the ground — an early warning that a cone of magma is pushing upwards. Now, using satellites such as Landsat 8 and data from the recent AVUELO mission, scientists think this biological response could be visible remotely, serving as an added layer of early warning for eruptions in high-risk areas that currently menace millions worldwide.

NASA Uses Tree Greening as Satellite Clue for Early Volcano Eruption Warnings in Remote Regions

As per the research by NASA’s Earth Science Division at Ames Research Centre, greening occurs when trees absorb volcanic carbon dioxide released as magma rises. These emissions precede sulfur dioxide and are harder to detect directly from orbit.

While carbon dioxide does not always appear obvious in satellite images, its downstream effects — enhanced vegetation, for example — can help reinforce existing volcanic early warning systems, notes volcanologist Florian Schwandner. It could be important because, as the U.S. Geological Survey says, the country is still one of the most volcanically active.

Globally, about 1,350 potentially active volcanoes exist, many in remote or hazardous locations. On-site gas measurement is costly and dangerous, prompting volcanologists like Robert Bogue and Nicole Guinn to explore tree-based proxies.

Guinn’s study of tree leaves around Sicily’s Mount Etna found a strong correlation between leaf colour and underground volcanic activity. Satellites such as Sentinel-2 and Terra have proven capable of capturing these subtle vegetative changes, particularly in forested volcanic areas.

To confirm this method, climate scientist Josh Fisher led NASA-Smithsonian teams in March 2025 to Panama and Costa Rica, collecting tree samples and measuring gas levels near active volcanoes. Fisher sees this interdisciplinary research as key to both volcano forecasting and understanding long-term tree response to atmospheric carbon dioxide, which will reveal future climate conditions.

The benefits of early carbon dioxide detection have been demonstrated in the 2017 eruption of Mayon volcano in the Philippines, where it allowed mass evacuations and saved more than 56,000 lives. It has its limitations, like bad terrain or too much environmental noise, but it could be a game-changer.

Continue Reading

Science

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

Published

on

By

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

11 new active galactic nuclei were detected in an all-sky X-ray source survey conducted by researchers from the Russian Academy of Sciences. A team led by Grigory Uskov has been on an inspection of the X-ray sources found in the ART-XC telescope of the Spektr-RG (SRG) space observatory. So far, their studies have resulted in the identification of more than 50 AGNs and several cataclysmic variables. A deeper dive into the physical properties and radiation nature of those galaxies will be crucial for a wide range of studies such as statistical insights, refining and testing cosmological models, classification studies etc.

Classification of newly found AGN

According to the recent study published in Astronomy letters, the newly discovered active galactic nuclei from the ARTSS1-5 catalog are categorised as the Seyfert galaxies, seven type 1 (Sy 1), three type 1.9 (Sy 1.9) and one type 2 (Sy 2).

AGN or active galactic nuclei are considered as the most luminous persistent sources of electromagnetic radiation in the universe. These compact regions at the centre of a galaxy are extremely energetic due to accretion onto a supermassive black hole or star formation activity at the galaxy’s center.

Based on their luminosity, AGNs are categorised as Seyfert Galaxies and Quasars. Seyfert galaxies are lower-luminosity AGNs where the host galaxy is clearly visible and emit a lot of infrared radiation, and have broad optical emission lines.

Research findings

The published paper states the 11 newly found galaxies are located relatively nearby, at redshifts of 0.028-0.258. The X-ray luminosities of these sources are within the range of 2 to 300 tredecillion erg/s, therefore typical for AGNs at the present epoch.

The spectrum of one of the new AGNs, designated SRGA J000132.9+240237, is described by a power law with a slope smaller than 0.5, which suggests a strong absorption and a significant contribution of the radiation reflected from the galaxy’s dusty torus. The authors of the paper noted that longer X-ray observations are required to determine the physical properties of this AGN.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Itel A90 With Unisoc T7100 Chipset, 13-Megapixel Main Camera Launched in India



Realme Neo 7 Turbo Confirmed to Launch This Month, Pre-Reservations Begin

Related Stories

Continue Reading

Science

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Published

on

By

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Global warming and climate change have been subjects of major concern for a long time. One of the key indicators of this phenomenon is the melting of ice in the polar regions. Researchers from Tongji University in Shanghai have been using NASA satellite data to track changes in Antarctica’s ice sheet over more than two decades. Their newest study states that despite the increase in global temperature, Antarctica has gained ice in recent years. However, it cannot be considered as a miraculous reversal in global warming because over these two decades, the overall trend is substantial ice loss. Most of the gains have been caused by unusual increased precipitation over Antarctica.

About the New study

According to the new study , NASA’s Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-On satellites have been monitoring this ice sheet since 2002. The ice sheet covering Antarctica is the largest mass of ice on Earth

The satellite data revealed that the sheet experienced a sustained period of ice loss between 2002 and 2020. The ice loss accelerated in the latter half of that period, increasing from an average loss of about 81 billion tons (74 billion metric tons) per year between 2002 and 2010, to a loss of about 157 billion tons (142 billion metric tons) between 2011 and 2020, according to the study. However, the trend then shifted.

The ice sheet gained mass from 2021 to 2023 at an average rate of about 119 billion tons (108 metric tons) per year. Four glaciers in eastern Antarctica also flipped from accelerated ice loss to significant mass gain.

General Trend in global warming

Climate change doesn’t mean that everywhere on Earth will get hotter at the same rate, so a single region will never tell the whole story of our warming world.

Historically, temperatures over much of Antarctica have remained relatively stable, particularly compared to the Arctic. Antarctica’s sea ice has also been much more stable relative to the Arctic, but that’s been changing in recent years.

Continue Reading

Trending