Connect with us

Published

on

Plug-in hybrids use far more gasoline in the real world than regulatory agencies account for, according to a new analysis of data by the International Council on Clean Transportation, the research group that broke the Volkswagen dieselgate scandal.

The ICCT analyzed data both from Fuelly, an app which helps drivers track their fuel efficiency, and from the California Bureau of Automotive Repair (BAR). It then compared this data to regulatory agency estimates and found that PHEVs are not driving on electric power nearly as often as the EPA had assumed they are.

This could have significant implications for the way plug-in hybrid cars are regulated since they seem to produce more emissions and use more gasoline in practice than previously thought.

The data showed that PHEVs spend 26-56% less time in all-electric drive mode (this is called the “utility factor”), and therefore consume 42-67% more fuel than EPA labeling suggests.

Further, the unbiased data from BAR looked worse than the self-reporting data from Fuelly:

Researchers think this is because self-reported MPG data will skew towards drivers who pay more attention to efficiency, and thus are more likely to drive in a more efficient manner and remember to plug in their cars. But the data from BAR doesn’t include this bias, so in reality, PHEV shortcomings probably skew on the high end of these percentage estimates.

The ICCT had even more drastic results in an earlier study in Europe. In that study, fuel usage and emissions for PHEVs were 3-5 times higher than WLTP estimates suggested. Part of this was due to company cars where a company would pay for fuel, but not electricity, and thus were never plugged in, but were purchased by the company in order to get PHEV incentives. But even for non-company cars, the disparity between WLTP and real-world estimates was even larger than in the US.

Research lead Aaron Isenstadt showed us a table of the best- and worst-performing PHEV models, and pointed out that, as expected, “range-extended” models (like the i3 and Volt) which focus on using the engine as a backup generator for an ample battery tended to have higher electric usage. Whereas PHEVs with vestigial batteries like the original Plug-in Prius, or where the target customer was less environmentally-minded like the Range Rover and Panamera, were barely ever plugged in.

BestEDS BAR data (MY19+, automatic collection) Electric drive share Fuelly data (MY11+, user-reported) Electric drive share
1st 2019 Chevrolet Volt 0.623 2014 BMW i3 REX 0.900
2nd 2019 Volvo S60 AWD 0.548 2016 BMW I3 REX 0.875
3rd 2022 BMW 530e Sedan 0.499 2017 BMW i3 REX 0.864
4th 2021 BMW 330e xDrive 0.486 2015 BMW I3 REX 0.824
5th 2019 Volvo XC60 AWD 0.442 2016 Cadillac ELR 0.807
WorstEDS BAR data (MY19+, automatic collection) Electric drive share Fuelly data (MY11+, user-reported) Electric drive share
5th 2020 BMW 530E 0.116 2014 Porsche Panamera S E-Hybrid 0.115
4th 2022 Volvo XC90 T8 AWD Recharge 0.080 2013 Toyota Prius Plug-in Hybrid 0.113
3rd 2020 Land Rover Range Rover PHEV 0.062 2014 Toyota Prius Plug-in Hybrid 0.082
2nd 2022 Hyundai Tucson Plug-in Hybrid 0.054 2014 Honda Accord Plug-in Hybrid 0.045
1st 2022 Kia Niro Plug-in Hybrid 0.051 *** 0.000
*** 5 models showed higher overall fuel consumption than their label CS fuel consumption, resulting in presumed/default 0% EDS

Isenstadt said that the only model he would consider a high-achiever is the BMW i3 REX. Other models fell far short of expected EPA numbers. The EPA generally expects PHEVs to use electric drive 80% of the time or more (though this scales up and down based on battery size), and only the i3 crossed the EPA’s bar.

The i3 was notable for its large (~100 mile) battery and small, optional engine (with a corresponding very small gas tank). This resulted in it being treated more like an electric car with occasional gas capability, as opposed to many of today’s PHEVs which operate in blended mode.

We also spoke with Stephanie Searle, the study’s project manager, about the results. She wanted to highlight just how large the disparity was between regulatory and real-world numbers – not just a few percent, but more than 50%.

Searle noted that the BAR numbers were the first time ICCT had used unbiased, non-self-reported numbers in its analysis, and the fact that they were worse than the self-reported numbers means that the problem is perhaps worse than previous research indicates. She considers the BAR numbers to be more robust, but also noted that even the self-reported numbers from Fuelly, where you would expect efficiency-conscious drivers to live, showed a massive disparity.

Policy recommendations

The ICCT hopes that its research will influence policy around PHEVs by providing regulators with more data about the actual carbon reductions (or relative lack thereof) achieve by PHEV deployment.

The ICCT issued five specific recommendations to the EPA:

  • Adjust the regulatory utility factor downwards for PHEVs to reflect current real- world performance.
  • Require in-use data reporting for specific PHEV models to receive a higher utility factor reflective of said in-use data
  • Adopt minimum electric driving range requirements, similar to California’s range requirements for zero-emission vehicle crediting in its Advanced Clean Cars II regulation
  • Adopt maximum engine power-to-weight limits
  • Establish a higher utility factor corresponding to the purchase of PHEV by drivers with demonstrated home chargers or manufacturer assistance with charging access

It also recommended that manufacturers could incentivize regular charging by assisting with home charger installation and by actively reporting cost of driving to users, and that tax administrators could incentivize PHEV purchases by restricting tax credits to PHEV models which display high utility factors. The US government recently expanded EV tax credits in the Inflation Reduction Act, allowing even small-battery (>7kWh) PHEVs access to the full $7,500 credit, a contrast to ICCT’s recommendations.

Will EPA follow California?

Further, the EPA is currently considering new emissions rules for 2027 and later model year vehicles. It’s expected to announce them this coming spring.

Searle hoped that these coming rules would be heavily influenced by California’s recent “Advanced Clean Cars II” standard. When that standard was unveiled, we at Electrek said it could be better, but part of California’s reason for making easier rules was because it wanted to set a standard that could be applied to other states in the country where EV sales aren’t as high as in CA.

If the EPA decides to align its rules with California’s, as previously happened under President Obama, this could reduce light-duty transport emissions by about 75% nationwide compared to current levels, said Searle (light-duty emissions make up 57% of transport emissions). The ICCT recently posted a blog showing that targets roughly in line with California’s are necessary to meet President Biden’s goal to align US policy with the Paris Agreement.

The new California rules ban the sale of new gas cars after 2035, but allow up to 20% of new vehicles to be PHEVs. These PHEVs do need to meet minimum range requirements, in the hopes that cars with larger batteries will be more likely to be plugged in.

These findings show that even those California rules might overestimate the emissions reductions from PHEVs, and more consideration should be put into how to maximize the percentage of time people spend on electric drive, rather than using gasoline.

Do PHEVs matter?

All that said, this grousing over PHEVs may not matter much in the long run. ICCT says production costs are dropping faster for BEVs than PHEVs, which means all this may be a moot point in the future. Since PHEVs are basically two cars in one, falling battery prices may make BEVs an even clearer better choice for both buyers and manufacturers. PHEVs are currently rather popular in Europe, with similar market share as BEVs (partially due to the company car effect mentioned above), but have lagged far behind BEVs in the US, and it doesn’t look like they’re going to catch up.

But as long as we are in the current battery-constrained production scenario we are in, the ICCT’s new data will help regulators understand the relative carbon reduction potential of PHEVs as compared to BEVs, and that the benefit of PHEVs may be smaller than previously expected.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Published

on

By

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Texas-based tuning firm Vigilante 4×4 is known for its wild, high-horsepower Jeep SJ Hemi restomods – but they’re more than just a hot rod shop. To prove it, they’ve developed a bespoke, all-electric skateboard chassis designed to turn the classic Jeep Grand Wagoneer into a modern, desirable electric SUV.

The scope of the Vigilante 4×4 electric chassis project is truly impressive. More than just a Jeep SJ frame with an electric drive train bolted in, the chassis is a completely fresh design that utilizes precise 3D scans of the original SJ Wagoneers, Grand Wagoneers, and J-Trucks to establish hard points, then fitted with low-slung battery packs to give the electric restomods superior weight balance, a lower center of gravity, and objectively improved ride and handling compared to its classic, ICE-powered forefathers.

The result is a purpose-built platform that delivers power to the wheels through a dual-motor system – one mounted in the front, and one at the rear – to provide a permanent, infinitely variable four-wheel drive system that offers both on-road performance and the kind of off-road capability that made the Grand Wagoneer famous in the first place.

Vigilante 4×4 electric Jeep SJ


“This isn’t a replacement for our Vigilante HEMI offerings,” reads the official copy. “It’s a total revisit of the Vigilante platform under electric power.”

Advertisement – scroll for more content

The company emphasizes that its new chassis is still in the prototype stages. As such, there are no specs, there is no pricing, there are no range estimates. Despite it all, the response from Jeep enthusiasts has already been strong. “Keep in mind this is our first prototype,” a spokesperson said. “There’s still a lot of work to be done – but the journey has begun.”

Electrek’s Take


Electric SJ chassis; Vigilante 4×4.

Retro done wrong – think the Dodge Charger Daytona EV or VW ID.Buzz – is a disaster. Always. If that nostalgic tone is just a little bit off, the song doesn’t work. The heartstrings don’t pull. Done right, however, the siren song of nostalgia will have you putting a second mortgage on your house to put a Singer Porsche or ICON Bronco in your garage.

It’s too soon to tell what side of that line the Vigilante 4×4 Jeep SJ will eventually fall, but one thing (at least) is certain: it’s closer to the mark than that Wagoneer S.

SOURCE | IMAGES: Vigilante 4×4, via Mopar Insiders.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

EQORE bags $1.7M to bring smart storage to power-hungry factories

Published

on

By

EQORE bags .7M to bring smart storage to power-hungry factories

EQORE, a distributed battery storage startup based in Somerville, Massachusetts, has raised $1.7 million in seed funding to help industrial buildings tackle rising electricity costs. The round was oversubscribed and includes backing from the Massachusetts Clean Energy Center (MassCEC), Henry Ford III of Ford Motor Company, and Jonathan Kraft of The Kraft Group.

The timing couldn’t be more relevant. Data centers are booming, and that demand is slamming an already stressed grid. Big, utility-scale batteries help at the grid level, but they can’t fix the bottlenecks happening on local distribution networks. That’s where onsite storage steps in — storing energy when demand is low and discharging it when demand spikes, which helps stabilize costs for both the grid and the businesses using it.

MassCEC’s head of investments, Susan Stewart, said, “What excites us the most about EQORE’s technology is the dual impact: grid support and customer savings.” She noted that commercial and industrial buildings are ideal hosts for battery storage, but haven’t gotten much attention until now. “EQORE is closing that gap.”

Investor Randolph Mann highlighted what makes the company stand out: “By uniting advanced controls with high‑resolution metering and true end‑to‑end service, EQORE finally makes commercial behind-the-meter storage effortless and financially compelling for businesses.”

Advertisement – scroll for more content

EQORE comes out of MIT’s Sandbox program and delta v accelerator and is currently part of the Harvard Climate Entrepreneurs Circle incubator. CEO and cofounder Valeriia Tyshchenko, a third‑generation engineer from Ukraine and MIT graduate, said the new funding will help the company scale alongside its existing revenue.

With the seed round closed, EQORE plans to grow its team and ramp up battery deployments at energy-intensive manufacturing facilities. The company doesn’t just install batteries; it operates them. Its autonomous software shifts when a facility uses power based on market conditions and utility incentives, reshaping load in real-time without disrupting operations.

Read more: Battery boom: 5.6 GW of US energy storage added in Q2


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Check out Hyundai’s cool new off-road electric SUV concept [Images]

Published

on

By

Check out Hyundai's cool new off-road electric SUV concept [Images]

Hyundai took the sheets of its new off-road electric SUV, the Crater Concept, at the LA Auto Show. Here’s our first look at the compact off-roader.

Meet Hyundai’s new off-road SUV, the Crater Concept

We knew it was coming after Hyundai teased the off-road SUV earlier this week, hidden under a drape. Hyundai took the sheets off the Crater Concept at the LA Auto Show on Thursday, giving us our first real look at the rugged off-roader.

Hyundai refers to it as a compact off-road SUV that’s inspired by extreme events. The concept was brought to life at the Hyundai America Technical Center in Irvine, California.

The off-road SUV draws design elements from Hyundai’s Extra Rugged Terrain (XRT) models, such as the IONIQ 5 XRT, Santa Cruz XRT, and the new Pallisade XRT Pro.

Advertisement – scroll for more content

Although it’s a concept, Hyundai said the Crater Concept is a testament to its commitment to designing future XRT vehicles that are more functional, more capable, and more emotional.

Hyundai-off-road-SUV
The Hyundai Crater off-road SUV Concept (Source: Hyundai)

“CRATER began with a question: ‘What does freedom look like?’ This vehicle stands as our answer,” Hyundai’s global design boss, SangYup Lee said.

The off-road SUV features Hyundai’s new Art of Steel design theme, first showcased on the THREE concept at the Munich Motor Show in September.

Hyundai-off-road-SUV
The Hyundai Crater Concept (Source: Hyundai)

Hyundai said the design team was guided by one clear goal: To create a rugged and capable vehicle that’s designed to go anywhere. The Crater Concept embodies that vision with added wide skid plates, 33″ off-road tires, limb risers, rocker panels, and a roof platform.

Hyundai designed the interior for “tech-savvy adventure seekers,” with a singular design centered around a high-brow crash pad that stretches across the dashboard.

Hyundai-Crater-off-road-SUV
The Hyundai Crater Concept (Source: Hyundai)

The concept also swaps the traditional infotainment setup for a head-up display that spans the entire front window, which Hyundai said includes a live rearview camera.

Hyundai’s off-roader includes a new Off-Road Controller for front and rear locking differentials, as well as a terrain selector with modes including Sand, Snow, and Mud. Other off-road features include downhill brake control, trailer brake control, a compass, and an altimeter.

Although Hyundai said it was electric, it didn’t reveal any further details about the powertrain. The off-road SUV could be a battery-electric or fuel-cell-electric vehicle.

Like the new Nexo, Hyundai’s hydrogen fuel cell vehicle, the concept features “HTWO” lamps exclusive to its FCEVs.

Earlier this week, the design team at Hyundai Design North America also introduced its new design and ideation studio codenamed “The Sandbox.” The creative design studio is set to serve as a global hub for future XRT vehicles and gear.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending