Connect with us

Published

on

Nuclear fusion holds huge promise as a source of clean, abundant energy that could power the world. Now, fusion researchers at a national laboratory in the US have achieved something physicists have been working towards for decades, a process known as “ignition”.

This step involves getting more energy out from fusion reactions than is put in by a laser.

But just how close are we to producing energy from fusion that can power people’s homes? While the ignition is only a proof of principle and the first step in a very long process, other developments are also in the works and together they could spark renewed enthusiasm for making fusion a practical reality.

First, it’s important to recognise that the latest result is indeed a real milestone.

The researchers at the National Ignition Facility (NIF) in California fired the world’s biggest laser at a capsule filled with hydrogen fuel, causing it to implode and starting fusion reactions that mimic what happens in the Sun.

The fusion energy released by the implosion was more than that put in by the laser, a massive achievement given that, just a few years ago, the NIF laser could only get out about a thousandth of the energy it put in.

However, around 10,000 times more energy had to be put into the laser than it produced in light energy.

It can only be run once a day. And every target is so exquisitely designed that each one costs thousands of dollars.

To produce a reactor for a working power station, you would need a laser that produced light energy at much greater efficiency (a few tens of percent) and shot targets successfully at ten times per second, with each target costing a few pence or so.

In addition, each laser shot would need to produce many times – perhaps 100 times – more energy out than was put in.

Very little research has actually been done on fusion “reactors”, where neutrons from the reactions would help drive a steam turbine to produce electricity. But there are other reasons for hope.

Firstly, while NIF has taken more than a decade to achieve ignition, during the same period, scientists have independently developed new lasers.

These use electronic devices called diodes to transfer energy to the laser and are very, very efficient, converting a good fraction of the electricity from the grid into laser light.

Prototype versions of such lasers have been proven to work at the rates of 10 times per second, which would be required for them to be useful in fusion.

These lasers are not yet of the size needed for fusion, but the technology is proven, and the UK leads in this type of research.

Also, the approach to fusion used by the scientists at NIF has some well-known, inherent inefficiencies, and there are several other ideas that could be much more effective.

Nobody is absolutely certain that these other ideas would work, as they have their own unique problems, and have never been tried at scale.

To do so would require hundreds of millions of dollars of investment for each of them with no guarantee of success (otherwise it would not be research).

However, there is now a wind of change blowing: the private sector.

Various funds with a very long-term outlook have started to invest in new start-up firms that are touting fusion as a commercially viable source of energy.

Given that it was private industry that has revolutionised the electric car market (and the rocket industry), maybe that sector could also give fusion the “kick” it requires.

Private firms can work a lot faster than governments, and pivot quickly to adopt new ideas when required.

Estimates of the total private funding in the sector now stand in excess of $2 billion (roughly Rs. 16,500 crore), peanuts compared with the $2 trillion (roughly Rs. 165 lakh crore) in revenue produced by the oil and gas industry each year.

There is still a lot of room in the marketplace for the high-risk, high-pay-off players.

The latest results show that the basic science works: the laws of physics do not prevent us from achieving the goal of unlimited clean energy from fusion.

The problems are technical and economic. While fusion may be too far off to solve matters on the timescale of a decade or two, the latest advance will at least bolster enthusiasm about solving one of humanity’s grand challenges.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s SPHEREx Telescope Launching Aboard SpaceX Falcon 9 to Explore Cosmic Evolution

Published

on

By

NASA’s SPHEREx Telescope Launching Aboard SpaceX Falcon 9 to Explore Cosmic Evolution

NASA’s latest infrared space telescope, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), is set for launch on 28th February. The mission, valued at $488 million, will take off from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. Designed to scan the entire sky in infrared light, it will collect data from over 450 million galaxies and 100 million stars in the Milky Way. The telescope’s observations will focus on regions of the universe that are typically too distant or faint for conventional telescopes.

Scientific Objectives

According to NASA, the primary aim of SPHEREx is to enhance understanding of cosmic inflation, the rapid expansion of the universe that occurred within the first second following the Big Bang. By mapping the large-scale structure of the cosmos, the telescope will provide insight into how galaxies formed and evolved. Scientists also anticipate that its data will help track the presence and distribution of icy molecules in interstellar space, shedding light on the origins of water and essential organic compounds required for life.

Technical Capabilities

As per NASA’s Jet Propulsion Laboratory (JPL), SPHEREx weighs approximately 500 kilograms and operates on 270 to 300 watts of power. It is fitted with a spectrophotometer capable of detecting 102 different wavelengths of light, which allows it to identify unique chemical signatures of molecules across space. James Fanson, Project Manager at JPL, told NPR that unexpected discoveries are likely to emerge from the mission’s data.

Accompanying Mission

As reported, SPHEREx will not be the sole payload on this launch. It will share the Falcon 9 with PUNCH (Polarimeter to Unify the Corona and Heliosphere), a NASA mission consisting of four satellites that will examine the sun’s outer atmosphere and solar wind dynamics. Together, these missions aim to deepen scientific knowledge of both the distant universe and the immediate solar environment.

Continue Reading

Science

New Study Suggests Dogs May Have Domesticated Themselves for Food

Published

on

By

New Study Suggests Dogs May Have Domesticated Themselves for Food

The origins of dog domestication have been a topic of debate among scientists, with theories suggesting various evolutionary processes led to the transformation of wolves into the domestic dogs seen today. A new study has indicated that early wolves may have chosen to stay near humans due to the availability of food scraps, potentially leading to their domestication over thousands of years. The findings support the idea that self-domestication was possible through natural selection, as wolves that were more tolerant of human presence may have had better access to resources and, in turn, passed on these traits to their offspring.

Wolves and Their Path to Domestication

According to the study published in Proceedings of the Royal Society B, the first phase of dog domestication is believed to have taken place between 30,000 and 15,000 years ago. This period is thought to have been influenced primarily by natural selection rather than human intervention. Researchers suggest that wolves with a less aggressive temperament may have been more likely to stay near human settlements, where food was more accessible. Over time, these wolves may have selectively bred with others that exhibited similar traits, gradually leading to the emergence of early domesticated dogs.

The Role of Natural Selection

In an effort to address concerns regarding the timeframe of domestication, researchers used statistical models to determine whether natural selection alone could have driven this process. As per the findings, domestication through self-selection was plausible if two conditions were met: wolves had to opt for a human-proximate lifestyle due to consistent food availability, and they had to choose mates with a comparable level of tameness. Alex Capaldi, a mathematician and statistician at James Madison University, explained to Live Science that if both conditions were fulfilled, the timeline for self-domestication became feasible despite previous skepticism regarding the speed of such evolutionary changes.

Similar Patterns Observed in Other Animals

The study draws parallels with cat domestication, where felines are believed to have settled near human farming communities around 10,000 years ago. In exchange for hunting rodents, they gained access to human food resources, leading to a mutually beneficial relationship. Scientists suggest that understanding how domestication occurred in dogs may provide further insights into human-animal interactions throughout history, as dogs played a significant role in early human societies by assisting in hunting and herding.

Unanswered Questions in Dog Evolution

While the model presents a plausible explanation, researchers acknowledge that it does not definitively prove how domestication occurred. The study highlights self-domestication as a possibility rather than a confirmed mechanism. The debate over whether human intervention or natural selection played a greater role continues, with further research needed to uncover definitive answers. However, the findings contribute to a broader understanding of early human-animal relationships and how evolutionary forces shaped them.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Anthropic Releases Claude 3.7 Sonnet AI Model With Reasoning Capabilities, Introduces Claude Code



Google’s AI Overviews Erode the Internet, US EdTech Firm Chegg Says in Lawsuit

Continue Reading

Science

NASA Partners With SpaceX To Launch NEO Surveyor

Published

on

By

NASA Partners With SpaceX To Launch NEO Surveyor

A contract has been awarded by NASA to SpaceX for the launch of its Near-Earth Object (NEO) Surveyor spacecraft, which is intended to identify asteroids and comets that could pose a threat to Earth. The mission is set to launch no earlier than September 2027 from Florida’s Space Coast using a Falcon 9 rocket. The contract for the launch and related services has been valued at approximately $100 million. The spacecraft is expected to enhance planetary defense efforts by detecting and characterizing near-Earth objects that could potentially cause significant damage upon impact. The mission will be operated by NASA’s Jet Propulsion Laboratory (JPL) in California, with support from various scientific institutions.

Mission Objectives and Capabilities

As per reports, according to NASA, the NEO Surveyor will be positioned at the Sun-Earth Lagrange Point 1, approximately 1.5 million kilometers from Earth. From this vantage point, the spacecraft will use its 50-centimetre infrared telescope to scan space in two infrared wavelengths. This will allow the detection of both bright and dark asteroids, including those that are difficult to observe with existing Earth-based telescopes. The goal of the mission is to locate at least two-thirds of undiscovered NEOs measuring 140 meters or more in diameter, which are large enough to cause regional devastation if they collide with Earth.

Planetary Defense Efforts and Previous Missions

The NEO Surveyor mission follows previous planetary defense initiatives involving SpaceX. In 2021, NASA’s Double Asteroid Redirection Test (DART) was launched aboard a Falcon 9 rocket, successfully impacting the asteroid Dimorphos to test the feasibility of altering an asteroid’s trajectory. In 2024, the European Space Agency’s Hera mission was also launched using a Falcon 9 to study the aftermath of the DART impact on the Didymos system. These missions are part of ongoing efforts to develop technologies capable of mitigating potential asteroid threats in the future.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Severed Skulls with Nails in Iron Age Spain Suggest Complex Ritual Practices



Panasonic Soundbars With Dolby Digital Plus Support Launched in India: Price, Features

Related Stories

Continue Reading

Trending