Connect with us

Published

on

A dust devil looks a bit like a tornado, but is weaker and rarely lasts more than about a minute.

It is a twisting column of warmed air scooting across sun-heated ground, made visible by the dust that it lofts upwards. Although usually benign, occasionally dust devils can kill.

Dust devils have been known to appear on Mars since the 1970s. They have been observed both from the ground and from orbit.

The more dust in the Martian atmosphere, the warmer and more agitated it becomes, and this can escalate into a global dust storm.

When the dust settles, it can coat and disable the solar panels that are essential for many of the instruments we’ve landed on the planet.

There’s a lot we don’t know about how these devils function. But new research, published this week in Nature Communications, has recorded what dust devils sound like – giving fresh insights into how they operate.

But it also raises questions about how future astronauts would detect and interpret sounds on the red planet.

There has been a vast amount of erosion on Mars since the last rivers and lakes vanished, including at the landing sites of both Nasa’s current rovers Curiosity and Perseverance.

Although the erosive power of an individual dust devil is tiny, a billion years worth of dust devils could potentially have worn away kilometres of rock.

There are thus many reasons for wanting to better understand how dust devils function.

And we now know what a Martian dust devil sounds like thanks to the new study led by Naomi Murdoch of Toulouse University in France.

Many passing dust devils have been imaged by cameras on Mars landers and rovers, but Murdoch and her team report a dust devil that luckily passed exactly over the Perseverance rover on September 27, 2021, which was on the floor of Jezero crater.

The rover’s masthead camera, named SuperCam, includes a microphone, and this recorded the sound of the wind rising and falling as the dust devil passed over.

In detail, the wind noise rose when the leading wall of the vortex arrived, followed by a lull representing the calm air in the eye of the vortex, before a second episode of wind noise as the trailing wall of the vortex passed over.

This took less than ten seconds, and you can hear the sound recording here(https://jirafeau.isae-supaero.fr/f.php?h=2JWSkdJR&p=1) (turn your volume to max). Other sensors gave information too. They showed that the pressure fell to a minimum between the two bursts of wind noise – which to me is consistent with sucking rather than blowing – and also recorded impacts of individual dust grains onto the rover.

The dust devil was about 25 metres in diameter, at least 118 metres tall, and was tracking across the ground at about five metres per second.

The maximum wind speed in the rotating vortex was probably just under 11 metres per second, equating to a “fresh” to “strong” breeze on Earth.

Did it really sound like that? Listening to a recording purporting to be the sound of Martian wind is all very well, but is this really what we would hear if we were there ourselves? The first thing to note is that this does genuinely originate as “real sound”, unlike other data such as images or radio signals turned into sound (a process known as sonification), such as the so-called sound of two black holes colliding or radio noise from from Venus’s atmosphere.

The dust devil audio file contains actual sound waves picked up by a microphone on Mars.

There the atmosphere is much thinner than on Earth (Martian surface pressure is less than a hundredth of ours), so the high frequency component of sound hardly carries (scientists say it’s “attenuated”).

The result is that the wind sounds much lower in pitch than a similar wind on Earth.

The only other planetary body from which we have genuine sound recordings is Venus, where in 1982 two Soviet “Venera” landers recorded wind and lander operation noises.

However, if you were on Mars you could never hear the wind directly with your own ears.

If you were foolish enough to expose your ears to Mars’s atmosphere, the low external pressure would cause your eardrums to burst, and you would be instantly deaf as well as having no air to breathe.

If you were to go outside in a pressurised spacesuit (a much more sensible idea), what you would hear would depend on how well the sound waves were transmitted through the solid shell of your helmet, and then on how these were turned back into sound waves in the air inside your helmet.

In other words, you would hear a distorted version of what an external microphone would pick up. Imagine walking round on Earth with your head inside a goldfish bowl and you’ll get part of the idea.

If future human explorers on Mars want to hear what’s going on in the external environment, I suspect they will rely on a suit-mounted microphone feeding to wireless ear buds, although I can’t find any evidence that that this has yet been factored into Mars suit design.

This all boils down to a recording from external microphone being the best way to represent sounds on Mars, or indeed any other planet that has an atmosphere.

If you want to hear some more sounds from Mars, NASA has a collection of audio recordings you can listen to.


Affiliate links may be automatically generated – see our ethics statement for details.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2023 hub.

Continue Reading

Science

NASA’s New Missions Will Map the Sun and the Cosmos

Published

on

By

NASA’s New Missions Will Map the Sun and the Cosmos

Two NASA missions aimed at advancing space research are scheduled for launch aboard a SpaceX Falcon 9 rocket on March 2 from Launch Complex 4E at Vandenberg Space Force Base in California. The spacecraft, PUNCH and SPHEREx, have been designed for separate but complementary scientific objectives. While PUNCH will focus on the dynamics of the Sun’s corona and solar wind, SPHEREx will survey the broader universe using infrared observations. This dual launch, facilitated under NASA’s Launch Services Program, is expected to enhance understanding of cosmic evolution and space weather phenomena.

PUNCH to Study Solar Wind and Space Weather

As reported by Space.com, according to NASA, the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission consists of four small satellites designed to create three-dimensional images of the Sun’s outer atmosphere. These satellites will use polarized light to track solar events such as coronal mass ejections (CMEs), helping scientists determine their trajectories and potential impacts on Earth. Speaking to Space.com, Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center, stated that the mission is expected to provide significantly improved resolution compared to previous heliophysics missions like STEREO.

SPHEREx to Map the Universe in Infrared

As per NASA, the Spectro-Photometer for the History of the Universe, Epoch of Reionisation, and Ices Explorer (SPHEREx) will conduct an extensive infrared survey of the entire sky every six months. Unlike the James Webb Space Telescope, which captures highly detailed images of specific regions, SPHEREx is designed to generate broad cosmic maps in 102 wavelengths. In a statement to Space.com, Phil Korngut, SPHEREx instrument scientist at the California Institute of Technology, noted that the data will contribute to research on cosmic inflation, galaxy formation, and the origins of water in planetary systems.

Both missions are expected to play a crucial role in expanding current knowledge of space phenomena, with their launch anticipated to provide valuable insights into both solar and cosmic environments.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

SpaceX Falcon 9 Launches Athena Lander, NASA’s Lunar Trailblazer to Moon

Published

on

By

SpaceX Falcon 9 Launches Athena Lander, NASA's Lunar Trailblazer to Moon

A SpaceX Falcon 9 rocket lifted off from Kennedy Space Center on February 26, 2025, carrying the Athena lunar lander and NASA’s Lunar Trailblazer orbiter. The launch, which took place at 7:16 p.m. EST from Launch Complex-39A, marked a significant step in lunar exploration. Athena, developed by Intuitive Machines, is designed to investigate lunar water ice deposits, while Lunar Trailblazer will study similar phenomena from orbit.

Scientific Goals and Technology

As per reports, according to NASA, Athena is equipped with ten scientific instruments, including the Polar Resources Ice Mining Experiment 1 (PRIME-1). The experiment consists of the Regolith Ice Drill for Exploring New Terrain (TRIDENT) and the Mass Spectrometer observing lunar operations (MSolo), both of which will work to extract and analyse samples from beneath the lunar surface. These investigations aim to provide critical data on the presence of water ice, supporting future in-situ resource utilisation (ISRU) efforts.

Lunar Trailblazer, an orbiter developed by NASA, will complement Athena’s findings by mapping water ice deposits across the lunar surface. Scientists have stated that its data will enhance the understanding of lunar ice distribution, particularly in the Mons Mouton region, where Athena is expected to land.

Landing Plans and Exploration Vehicles

Reports indicate that Athena will reach lunar orbit in four to five days and attempt a landing between 1.5 and three days after that. The mission will last approximately ten Earth days. To extend its exploration capabilities, Athena carries two secondary vehicles: MAPP, a rover designed by Lunar Outpost, and Grace, a hopping robot developed by Intuitive Machines. Grace will explore shadowed craters inaccessible to wheeled vehicles, while MAPP will establish a lunar cellular network using the Lunar Surface Communications System (LSCS) developed by Nokia Bell Labs.

Challenges and Expectations

This mission follows Intuitive Machines’ IM-1 mission, which achieved the first soft lunar landing by a private company but encountered a landing issue that affected data transmission. Trent Martin, Senior Vice President of Space Systems at Intuitive Machines, stated to Space.com that improved landing accuracy is a primary focus for IM-2.

NASA’s contract for IM-2 was initially valued at $47 million but increased to $62.5 million due to additional requirements, including temperature data collection. Reports suggest that Athena and Lunar Trailblazer are part of a broader lunar exploration effort, joining missions such as Firefly Aerospace’s Ghost Riders in the Sky and ispace’s Resilience lander, both launched earlier in 2025.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

Published

on

By

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

A team of engineers has introduced two innovative techniques for shaping carbon electrodes derived from bread. The methods, which build upon previous research, enable the formation of electrodes in precise and sturdy forms. These advancements could enhance the sustainability of electrode production by utilising stale bread, a commonly wasted food item. The process involves heating bread at high temperatures in an oxygen-free environment, converting it into a carbon-based material suitable for applications such as desalination systems. The research aims to refine this process for potential large-scale production, offering an eco-friendly alternative for carbon electrode manufacturing.

New Techniques for Molding Carbon Electrodes

According to the study published in Royal Society Open Science, the research was conducted by David Bujdos, Zachary Kuzel and Adam Wood from Saint Vincent College and the University of Pittsburgh. The team built upon earlier efforts by Adam Wood, who had previously demonstrated that stale bread could be used to produce carbon electrodes due to its high carbon content.

The latest development introduces two techniques that allow for shaping the electrodes into desired forms. The first method involves compressing bread using a 3D-printed mold before subjecting it to the heating process. This technique enables the formation of precise electrode shapes. In a test, a zigzag mold was used to demonstrate its effectiveness.

The second method requires blending bread with water before shaping it manually. Once formed, the material is dried and carbonised in an oven. While this approach provides less precision, the resulting electrodes are reportedly more durable.

Potential for Sustainable Electrode Production

As per reports, the researchers believe these methods could contribute to the development of a low-cost capacitive desalination system. The aim is to create an environmentally friendly solution that reduces food waste while addressing water purification challenges. Efforts are underway to refine the process and explore possibilities for large-scale implementation.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


People in Modern Societies Sleep More but Have Irregular Sleep Cycles



Microsoft Copilot App for macOS Released; iPhone and iPad Apps Get Updates

Continue Reading

Trending