Connect with us

Published

on

There are hundreds of millions of asteroids in our solar system, which means new asteroids are discovered quite frequently. It also means close encounters between asteroids and Earth are fairly common. Some of these close encounters end up with the asteroid impacting Earth, occasionally with severe consequences.

A recently discovered asteroid, named 2023 BU, has made the news because today it passed very close to Earth.

Discovered on January 21 by amateur astronomer Gennadiy Borisov in Crimea, 2023 BU passed only about 3,600 km from the surface of Earth (near the southern tip of South America) six days later on January 27.

That distance is just slightly farther than the distance between Perth and Sydney and is only about 1 percent of the distance between Earth and our Moon.

The asteroid also passed through the region of space that contains a significant proportion of the human-made satellites orbiting Earth.

All this makes 2023 BU the fourth-closest known asteroid encounter with Earth, ignoring those that have impacted the planet or our atmosphere.

How does 2023 BU rate as an asteroid and a threat? 2023 BU is unremarkable, other than that it passed so close to Earth. The diameter of the asteroid is estimated to be just 4–8m, which is on the small end of the range of asteroid sizes.

There are likely hundreds of millions of such objects in our solar system, and it is possible 2023 BU has come close to Earth many times before over the millennia. Until now, we have been oblivious to the fact.

In context, on average a 4-metre-diameter asteroid will impact Earth every year and an 8-metre-diameter asteroid every five years or so Asteroids of this size pose little risk to life on Earth when they hit because they largely break up in the atmosphere. They produce spectacular fireballs, and some of the asteroids may make it to the ground as meteorites.

Now that 2023 BU has been discovered, its orbit around the Sun can be estimated and future visits to Earth predicted. It is estimated there is a 1 in 10,000 chance 2023 BU will impact Earth sometime between 2077 and 2123.

So, we have little to fear from 2023 BU or any of the many millions of similar objects in the Solar System.

Asteroids need to be greater than 25m in diameter to pose any significant risk to life in a collision with Earth; to challenge the existence of civilisation, they’d need to be at least a kilometre in diameter.

It is estimated there are fewer than 1,000 such asteroids in the Solar System and could impact Earth every 5,00,000 years. We know about more than 95 per cent of these objects.

Will there be more close asteroid passes? 2023 BU was the fourth closest pass by an asteroid ever recorded. The three closer passes were by very small asteroids discovered in 2020 and 2021 (2021 UA, 2020 QG and 2020 VT).

Asteroid 2023 BU and countless other asteroids have passed very close to Earth during the nearly five billion years of the Solar System’s existence, and this situation will continue into the future.

What has changed in recent years is our ability to detect asteroids of this size, such that any threats can be characterised. That an object roughly 5m in size can be detected many thousands of kilometres away by a very dedicated amateur astronomer shows that the technology for making significant astronomical discoveries is within reach of the general public. This is very exciting.

Amateurs and professionals can together continue to discover and categorise objects, so threat analyses can be done. Another very exciting recent development came last year, by the Double Asteroid Redirection Test (DART) mission, which successfully collided a spacecraft into an asteroid and changed its direction.

DART makes plausible the concept of redirecting an asteroid away from a collision course with Earth if a threat analysis identifies a serious risk with enough warning.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s New Missions Will Map the Sun and the Cosmos

Published

on

By

NASA’s New Missions Will Map the Sun and the Cosmos

Two NASA missions aimed at advancing space research are scheduled for launch aboard a SpaceX Falcon 9 rocket on March 2 from Launch Complex 4E at Vandenberg Space Force Base in California. The spacecraft, PUNCH and SPHEREx, have been designed for separate but complementary scientific objectives. While PUNCH will focus on the dynamics of the Sun’s corona and solar wind, SPHEREx will survey the broader universe using infrared observations. This dual launch, facilitated under NASA’s Launch Services Program, is expected to enhance understanding of cosmic evolution and space weather phenomena.

PUNCH to Study Solar Wind and Space Weather

As reported by Space.com, according to NASA, the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission consists of four small satellites designed to create three-dimensional images of the Sun’s outer atmosphere. These satellites will use polarized light to track solar events such as coronal mass ejections (CMEs), helping scientists determine their trajectories and potential impacts on Earth. Speaking to Space.com, Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center, stated that the mission is expected to provide significantly improved resolution compared to previous heliophysics missions like STEREO.

SPHEREx to Map the Universe in Infrared

As per NASA, the Spectro-Photometer for the History of the Universe, Epoch of Reionisation, and Ices Explorer (SPHEREx) will conduct an extensive infrared survey of the entire sky every six months. Unlike the James Webb Space Telescope, which captures highly detailed images of specific regions, SPHEREx is designed to generate broad cosmic maps in 102 wavelengths. In a statement to Space.com, Phil Korngut, SPHEREx instrument scientist at the California Institute of Technology, noted that the data will contribute to research on cosmic inflation, galaxy formation, and the origins of water in planetary systems.

Both missions are expected to play a crucial role in expanding current knowledge of space phenomena, with their launch anticipated to provide valuable insights into both solar and cosmic environments.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

SpaceX Falcon 9 Launches Athena Lander, NASA’s Lunar Trailblazer to Moon

Published

on

By

SpaceX Falcon 9 Launches Athena Lander, NASA's Lunar Trailblazer to Moon

A SpaceX Falcon 9 rocket lifted off from Kennedy Space Center on February 26, 2025, carrying the Athena lunar lander and NASA’s Lunar Trailblazer orbiter. The launch, which took place at 7:16 p.m. EST from Launch Complex-39A, marked a significant step in lunar exploration. Athena, developed by Intuitive Machines, is designed to investigate lunar water ice deposits, while Lunar Trailblazer will study similar phenomena from orbit.

Scientific Goals and Technology

As per reports, according to NASA, Athena is equipped with ten scientific instruments, including the Polar Resources Ice Mining Experiment 1 (PRIME-1). The experiment consists of the Regolith Ice Drill for Exploring New Terrain (TRIDENT) and the Mass Spectrometer observing lunar operations (MSolo), both of which will work to extract and analyse samples from beneath the lunar surface. These investigations aim to provide critical data on the presence of water ice, supporting future in-situ resource utilisation (ISRU) efforts.

Lunar Trailblazer, an orbiter developed by NASA, will complement Athena’s findings by mapping water ice deposits across the lunar surface. Scientists have stated that its data will enhance the understanding of lunar ice distribution, particularly in the Mons Mouton region, where Athena is expected to land.

Landing Plans and Exploration Vehicles

Reports indicate that Athena will reach lunar orbit in four to five days and attempt a landing between 1.5 and three days after that. The mission will last approximately ten Earth days. To extend its exploration capabilities, Athena carries two secondary vehicles: MAPP, a rover designed by Lunar Outpost, and Grace, a hopping robot developed by Intuitive Machines. Grace will explore shadowed craters inaccessible to wheeled vehicles, while MAPP will establish a lunar cellular network using the Lunar Surface Communications System (LSCS) developed by Nokia Bell Labs.

Challenges and Expectations

This mission follows Intuitive Machines’ IM-1 mission, which achieved the first soft lunar landing by a private company but encountered a landing issue that affected data transmission. Trent Martin, Senior Vice President of Space Systems at Intuitive Machines, stated to Space.com that improved landing accuracy is a primary focus for IM-2.

NASA’s contract for IM-2 was initially valued at $47 million but increased to $62.5 million due to additional requirements, including temperature data collection. Reports suggest that Athena and Lunar Trailblazer are part of a broader lunar exploration effort, joining missions such as Firefly Aerospace’s Ghost Riders in the Sky and ispace’s Resilience lander, both launched earlier in 2025.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

Published

on

By

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

A team of engineers has introduced two innovative techniques for shaping carbon electrodes derived from bread. The methods, which build upon previous research, enable the formation of electrodes in precise and sturdy forms. These advancements could enhance the sustainability of electrode production by utilising stale bread, a commonly wasted food item. The process involves heating bread at high temperatures in an oxygen-free environment, converting it into a carbon-based material suitable for applications such as desalination systems. The research aims to refine this process for potential large-scale production, offering an eco-friendly alternative for carbon electrode manufacturing.

New Techniques for Molding Carbon Electrodes

According to the study published in Royal Society Open Science, the research was conducted by David Bujdos, Zachary Kuzel and Adam Wood from Saint Vincent College and the University of Pittsburgh. The team built upon earlier efforts by Adam Wood, who had previously demonstrated that stale bread could be used to produce carbon electrodes due to its high carbon content.

The latest development introduces two techniques that allow for shaping the electrodes into desired forms. The first method involves compressing bread using a 3D-printed mold before subjecting it to the heating process. This technique enables the formation of precise electrode shapes. In a test, a zigzag mold was used to demonstrate its effectiveness.

The second method requires blending bread with water before shaping it manually. Once formed, the material is dried and carbonised in an oven. While this approach provides less precision, the resulting electrodes are reportedly more durable.

Potential for Sustainable Electrode Production

As per reports, the researchers believe these methods could contribute to the development of a low-cost capacitive desalination system. The aim is to create an environmentally friendly solution that reduces food waste while addressing water purification challenges. Efforts are underway to refine the process and explore possibilities for large-scale implementation.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


People in Modern Societies Sleep More but Have Irregular Sleep Cycles



Microsoft Copilot App for macOS Released; iPhone and iPad Apps Get Updates

Continue Reading

Trending