Connect with us

Published

on

There are hundreds of millions of asteroids in our solar system, which means new asteroids are discovered quite frequently. It also means close encounters between asteroids and Earth are fairly common. Some of these close encounters end up with the asteroid impacting Earth, occasionally with severe consequences.

A recently discovered asteroid, named 2023 BU, has made the news because today it passed very close to Earth.

Discovered on January 21 by amateur astronomer Gennadiy Borisov in Crimea, 2023 BU passed only about 3,600 km from the surface of Earth (near the southern tip of South America) six days later on January 27.

That distance is just slightly farther than the distance between Perth and Sydney and is only about 1 percent of the distance between Earth and our Moon.

The asteroid also passed through the region of space that contains a significant proportion of the human-made satellites orbiting Earth.

All this makes 2023 BU the fourth-closest known asteroid encounter with Earth, ignoring those that have impacted the planet or our atmosphere.

How does 2023 BU rate as an asteroid and a threat? 2023 BU is unremarkable, other than that it passed so close to Earth. The diameter of the asteroid is estimated to be just 4–8m, which is on the small end of the range of asteroid sizes.

There are likely hundreds of millions of such objects in our solar system, and it is possible 2023 BU has come close to Earth many times before over the millennia. Until now, we have been oblivious to the fact.

In context, on average a 4-metre-diameter asteroid will impact Earth every year and an 8-metre-diameter asteroid every five years or so Asteroids of this size pose little risk to life on Earth when they hit because they largely break up in the atmosphere. They produce spectacular fireballs, and some of the asteroids may make it to the ground as meteorites.

Now that 2023 BU has been discovered, its orbit around the Sun can be estimated and future visits to Earth predicted. It is estimated there is a 1 in 10,000 chance 2023 BU will impact Earth sometime between 2077 and 2123.

So, we have little to fear from 2023 BU or any of the many millions of similar objects in the Solar System.

Asteroids need to be greater than 25m in diameter to pose any significant risk to life in a collision with Earth; to challenge the existence of civilisation, they’d need to be at least a kilometre in diameter.

It is estimated there are fewer than 1,000 such asteroids in the Solar System and could impact Earth every 5,00,000 years. We know about more than 95 per cent of these objects.

Will there be more close asteroid passes? 2023 BU was the fourth closest pass by an asteroid ever recorded. The three closer passes were by very small asteroids discovered in 2020 and 2021 (2021 UA, 2020 QG and 2020 VT).

Asteroid 2023 BU and countless other asteroids have passed very close to Earth during the nearly five billion years of the Solar System’s existence, and this situation will continue into the future.

What has changed in recent years is our ability to detect asteroids of this size, such that any threats can be characterised. That an object roughly 5m in size can be detected many thousands of kilometres away by a very dedicated amateur astronomer shows that the technology for making significant astronomical discoveries is within reach of the general public. This is very exciting.

Amateurs and professionals can together continue to discover and categorise objects, so threat analyses can be done. Another very exciting recent development came last year, by the Double Asteroid Redirection Test (DART) mission, which successfully collided a spacecraft into an asteroid and changed its direction.

DART makes plausible the concept of redirecting an asteroid away from a collision course with Earth if a threat analysis identifies a serious risk with enough warning.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

Published

on

By

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

NASA scientists might soon be able to forecast volcanic eruptions by monitoring how trees respond from space. Now, in a new collaboration with the Smithsonian Institution, they have discovered that tree leaves grow lusher and greener when previously dormant volcanic carbon dioxide seeps up from the ground — an early warning that a cone of magma is pushing upwards. Now, using satellites such as Landsat 8 and data from the recent AVUELO mission, scientists think this biological response could be visible remotely, serving as an added layer of early warning for eruptions in high-risk areas that currently menace millions worldwide.

NASA Uses Tree Greening as Satellite Clue for Early Volcano Eruption Warnings in Remote Regions

As per the research by NASA’s Earth Science Division at Ames Research Centre, greening occurs when trees absorb volcanic carbon dioxide released as magma rises. These emissions precede sulfur dioxide and are harder to detect directly from orbit.

While carbon dioxide does not always appear obvious in satellite images, its downstream effects — enhanced vegetation, for example — can help reinforce existing volcanic early warning systems, notes volcanologist Florian Schwandner. It could be important because, as the U.S. Geological Survey says, the country is still one of the most volcanically active.

Globally, about 1,350 potentially active volcanoes exist, many in remote or hazardous locations. On-site gas measurement is costly and dangerous, prompting volcanologists like Robert Bogue and Nicole Guinn to explore tree-based proxies.

Guinn’s study of tree leaves around Sicily’s Mount Etna found a strong correlation between leaf colour and underground volcanic activity. Satellites such as Sentinel-2 and Terra have proven capable of capturing these subtle vegetative changes, particularly in forested volcanic areas.

To confirm this method, climate scientist Josh Fisher led NASA-Smithsonian teams in March 2025 to Panama and Costa Rica, collecting tree samples and measuring gas levels near active volcanoes. Fisher sees this interdisciplinary research as key to both volcano forecasting and understanding long-term tree response to atmospheric carbon dioxide, which will reveal future climate conditions.

The benefits of early carbon dioxide detection have been demonstrated in the 2017 eruption of Mayon volcano in the Philippines, where it allowed mass evacuations and saved more than 56,000 lives. It has its limitations, like bad terrain or too much environmental noise, but it could be a game-changer.

Continue Reading

Science

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

Published

on

By

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

11 new active galactic nuclei were detected in an all-sky X-ray source survey conducted by researchers from the Russian Academy of Sciences. A team led by Grigory Uskov has been on an inspection of the X-ray sources found in the ART-XC telescope of the Spektr-RG (SRG) space observatory. So far, their studies have resulted in the identification of more than 50 AGNs and several cataclysmic variables. A deeper dive into the physical properties and radiation nature of those galaxies will be crucial for a wide range of studies such as statistical insights, refining and testing cosmological models, classification studies etc.

Classification of newly found AGN

According to the recent study published in Astronomy letters, the newly discovered active galactic nuclei from the ARTSS1-5 catalog are categorised as the Seyfert galaxies, seven type 1 (Sy 1), three type 1.9 (Sy 1.9) and one type 2 (Sy 2).

AGN or active galactic nuclei are considered as the most luminous persistent sources of electromagnetic radiation in the universe. These compact regions at the centre of a galaxy are extremely energetic due to accretion onto a supermassive black hole or star formation activity at the galaxy’s center.

Based on their luminosity, AGNs are categorised as Seyfert Galaxies and Quasars. Seyfert galaxies are lower-luminosity AGNs where the host galaxy is clearly visible and emit a lot of infrared radiation, and have broad optical emission lines.

Research findings

The published paper states the 11 newly found galaxies are located relatively nearby, at redshifts of 0.028-0.258. The X-ray luminosities of these sources are within the range of 2 to 300 tredecillion erg/s, therefore typical for AGNs at the present epoch.

The spectrum of one of the new AGNs, designated SRGA J000132.9+240237, is described by a power law with a slope smaller than 0.5, which suggests a strong absorption and a significant contribution of the radiation reflected from the galaxy’s dusty torus. The authors of the paper noted that longer X-ray observations are required to determine the physical properties of this AGN.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Itel A90 With Unisoc T7100 Chipset, 13-Megapixel Main Camera Launched in India



Realme Neo 7 Turbo Confirmed to Launch This Month, Pre-Reservations Begin

Related Stories

Continue Reading

Science

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Published

on

By

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Global warming and climate change have been subjects of major concern for a long time. One of the key indicators of this phenomenon is the melting of ice in the polar regions. Researchers from Tongji University in Shanghai have been using NASA satellite data to track changes in Antarctica’s ice sheet over more than two decades. Their newest study states that despite the increase in global temperature, Antarctica has gained ice in recent years. However, it cannot be considered as a miraculous reversal in global warming because over these two decades, the overall trend is substantial ice loss. Most of the gains have been caused by unusual increased precipitation over Antarctica.

About the New study

According to the new study , NASA’s Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-On satellites have been monitoring this ice sheet since 2002. The ice sheet covering Antarctica is the largest mass of ice on Earth

The satellite data revealed that the sheet experienced a sustained period of ice loss between 2002 and 2020. The ice loss accelerated in the latter half of that period, increasing from an average loss of about 81 billion tons (74 billion metric tons) per year between 2002 and 2010, to a loss of about 157 billion tons (142 billion metric tons) between 2011 and 2020, according to the study. However, the trend then shifted.

The ice sheet gained mass from 2021 to 2023 at an average rate of about 119 billion tons (108 metric tons) per year. Four glaciers in eastern Antarctica also flipped from accelerated ice loss to significant mass gain.

General Trend in global warming

Climate change doesn’t mean that everywhere on Earth will get hotter at the same rate, so a single region will never tell the whole story of our warming world.

Historically, temperatures over much of Antarctica have remained relatively stable, particularly compared to the Arctic. Antarctica’s sea ice has also been much more stable relative to the Arctic, but that’s been changing in recent years.

Continue Reading

Trending