Both pink and blue have been used to differentiate between different methods of hydrogen production.
Eve Livesey | Moment | Getty Images
From Tesla’s Elon Musk to European Commission President Ursula von der Leyen, the past few years have seen many high-profile names talk about the role hydrogen may — or may not — play in the planet’s shift to a more sustainable future.
Musk has expressed skepticism about hydrogen’s usefulness, but many think it could help to slash emissions in a number of sectors, including transportation and heavy industry.
While there’s a major buzz about hydrogen and its importance as a tool in securing a low-carbon future — a topic that’s generated a lot of debate in recent months — the vast majority of its production is still based on fossil fuels.
Indeed, according to a Sept. 2022 tracking report from the International Energy Agency, low-emission hydrogen production in 2021 accounted for less than 1% of global hydrogen production.
If it’s to have any role in the planned energy transition, then hydrogen generation needs to change in a pretty big way.
Read more about energy from CNBC Pro
“The first thing to say is that hydrogen doesn’t really exist naturally, so it has to be produced,” said Rachael Rothman, co-director of the Grantham Centre for Sustainable Futures at the University of Sheffield.
“It has a lot of potential to help us decarbonize going forwards, but we need to find low-carbon ways of producing it in the first place,” she said, adding that different methods of production had been “denoted different colors.”
“About 95% of our hydrogen today comes from steam methane reforming and has a large associated carbon footprint, and that’s what’s called ‘grey’ hydrogen,” Rothman told CNBC.
Grey hydrogen is, according to energy firm National Grid, “created from natural gas, or methane.” It says that the greenhouse gases associated with the process are not captured, hence the carbon footprint that Rothman refers to.
The dominance of such a method is clearly at odds with net-zero goals. As a result, an array of sources, systems and colors of hydrogen are now being put forward as alternatives.
These include green hydrogen, which refers to hydrogen produced using renewables and electrolysis, with an electric current splitting water into oxygen and hydrogen.
Blue hydrogen, on the other hand, indicates the use of natural gas — a fossil fuel — and carbon capture utilization and storage. There has been a charged debate around the role blue hydrogen could play in the decarbonization of society.
Pink potential
Alongside blue and green, another color attracting attention is pink. Like green hydrogen, its process incorporates electrolysis, but there’s a key difference: pink uses nuclear.
“If you split … water, you get hydrogen and oxygen,” Rothman said. “But splitting water takes energy, so what pink hydrogen is about is splitting water using energy that has come from nuclear.”
This means that “the whole system is low carbon, because … there’s no carbon in water … but also the energy source is also very low carbon because it’s nuclear.”
Alongside electrolysis, Rothman noted that nuclear could also be used with something called a thermochemical cycle.
This, she explained, harnessed very high temperatures to split water into oxygen and hydrogen.
Pink hydrogen already has some potentially significant backers. These include EDF Energy, which has floated the idea of producing hydrogen at Sizewell C, a 3.2-gigawatt nuclear power station planned for the U.K.
“At Sizewell C, we are exploring how we can produce and use hydrogen in several ways,” the firm’s website says. “Firstly, it could help lower emissions during construction of the power station.”
“Secondly, once Sizewell C is operational, we hope to use some of the heat it generates (alongside electricity) to make hydrogen more efficiently,” it adds.
EDF Energy, which is part of the multinational EDF Group, said in a statement sent to CNBC: “Hydrogen produced from nuclear power can play a substantial role in the energy transition.”
The company also acknowledged there were challenges facing the sector and its development.
“Hydrogen is currently a relatively expensive fuel and so the key challenge for low carbon electrolytic hydrogen, whether produced from renewable or nuclear energy, is to bring down the costs of production,” it said.
This needed “supportive policies which encourage investment in early hydrogen production projects and encourage users to switch from fossil fuels to low carbon hydrogen.”
“Growing the market for low carbon hydrogen will deliver the economies of scale and “learning by doing” which will help to reduce the costs of production.”
While there is excitement about the role nuclear could play in hydrogen production and the wider energy transition — the IEA, for example, says nuclear power has “significant potential to contribute to power sector decarbonisation” — it goes without saying that it’s not favored by all.
Critics include Greenpeace. “Nuclear power is touted as a solution to our energy problems, but in reality it’s complex and hugely expensive to build,” the environmental organization says. “It also creates huge amounts of hazardous waste.”
A multi-colored future?
During her interview with CNBC, the University of Sheffield’s Rothman spoke about the bigger picture and the role different types of hydrogen might play. Could we ever see a time when the level of blue and grey hydrogen drops to zero?
“It depends how long a timeframe you’re looking at,” she said, adding that “in an ideal world, they will eventually drop very low.”
“Ultimately, we ideally get rid of all of our grey hydrogen, because grey hydrogen has a large carbon footprint and we need to get rid of it,” Rothman said.
“As we improve carbon capture and storage, there may be a space for blue hydrogen and that’s yet to be evaluated, depending on the … developments there.”
“The pink and green we know there has to be a space for because that’s where you really get the low carbon [hydrogen], and we know it should be, it’s possible to get there.”
Fiona Rayment, chief scientist at the UK National Nuclear Laboratory — which, like EDF Energy, is a member of trade association Hydrogen UK — pressed home the importance of having a range of options available in the years ahead.
“The challenge of net zero cannot be underestimated; we will need to embrace all sources of low carbon hydrogen generation to replace our reliance on fossil fuels,” she told CNBC.
While there has been a lot of talk about using colors to differentiate the various methods of hydrogen production, there is also a lively discussion about whether such a classification system should even exist at all.
“What we want is low carbon hydrogen,” Rothman said. “And I know there is a lot of confusion about the various colors, and I’ve heard some people say … ‘why do we even have the colors, why do we not just have hydrogen and low carbon hydrogen?'”
“And ultimately, it’s the low carbon bit that’s important, and both pink and green would do that.”
In a joint statement, French and German economists have called on governments to adopt “a common approach” to decarbonize European trucking fleets – and they’re calling for a focus on fully electric trucks, not hydrogen.
France and Germany are the two largest economies in the EU, and they share similar challenges when it comes to freight decarbonization. The two countries also share a border, and the traffic between the two nations generates major cross-border flows that create common externalities between the two countries.
And for once, it seems like rail isn’t a viable option:
Advertisement – scroll for more content
While rail remains competitive mainly for heavy, homogeneous goods over long distances. Most freight in Europe is indeed transported over distances of less than 200 km and involves consignment weights of up to 30 tonnes (GCEE, 2024) In most such cases, transportation by rail instead of truck is not possible or not competitive. Moreover, taking into account the goods currently transported in intermodal transport units over distances of more than 300 km, the modal shift potential from road to rail would be only 6% in Germany and less than 2% in France.
That leaves trucks – and, while numerous government incentives currently exist to promote the parallel development of both hydrogen and battery electric vehicle infrastructures, the study is clear in picking a winner.
“Policies should focus on battery-electric trucks (BET) as these represent the most mature and market-ready technology for road freight transport,” reads the the FGCEE statement. “Hence, to ramp-up usage of BET public funding should be used to accelerate the roll-out of fast-charging networks along major corridors and in private depots.”
The appeal was signed by the co-chair of the advisory body on the German side is the chairwoman of the German Council of Economic Experts, Monika Schnitzer. Camille Landais co-chairs the French side. On the German side, the appeal was signed by four of the five experts; Nuremberg-based energy economist Veronika Grimm (who also sits on the National Hydrogen Council, which is committed to promoting H2 trucks and filling stations) did not sign.
With companies like Volvo and Renault and now Mercedes racking up millions of miles on their respective battery electric semi truck fleets, it’s no longer even close. EV is the way.
On today’s tariff-tastic episode of Quick Charge, we’ve got tariffs! Big ones, small ones, crazy ones, and fake ones – but whether or not you agree with the Trump tariffs coming into effect tomorrow, one thing is absolutely certain: they are going to change the price you pay for your next car … and that price won’t be going down!
Everyone’s got questions about what these tariffs are going to mean for their next car buying experience, but this is a bigger question, since nearly every industry in the US uses cars and trucks to move their people and products – and when their costs go up, so do yours.
New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.
Advertisement – scroll for more content
Got news? Let us know! Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.
FTC: We use income earning auto affiliate links.More.
GE Vernova has produced over half the turbines needed for SunZia Wind, which will be the largest wind farm in the Western Hemisphere when it comes online in 2026.
GE Vernova has manufactured enough turbines at its Pensacola, Florida, factory to supply over 1.2 gigawatts (GW) of the turbines needed for the $5 billion, 2.4 GW SunZia Wind, a project milestone. The wind farm will be sited in Lincoln, Torrance, and San Miguel counties in New Mexico.
At a ribbon-cutting event for Pensacola’s new customer experience center, GE Vernova CEO Scott Strazik noted that since 2023, the company has invested around $70 million in the Pensacola factory.
The Pensacola investments are part of the announcement GE Vernova made in January that it will invest nearly $600 million in its US factories and facilities over the next two years to help meet the surging electricity demands globally. GE Vernova says it’s expecting its investments to create more than 1,500 new US jobs.
Advertisement – scroll for more content
Vic Abate, CEO of GE Vernova Wind, said, “Our dedicated employees in Pensacola are working to address increasing energy demands for the US. The workhorse turbines manufactured at this world-class factory are engineered for reliability and scalability, ensuring our customers can meet growing energy demand.”
SunZia Wind and Transmission will create US history’s largest clean energy infrastructure project.
If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.