Service technicians work to install the foundation for a transmission tower at the CenterPoint Energy power plant on June 10, 2022 in Houston, Texas.
Brandon Bell | Getty Images News | Getty Images
This story is part of CNBC’s “Transmission Troubles” series, an inside look at why the aging electrical grid in the U.S. is struggling to keep up, how it’s being improved, and why it’s so vital to fighting climate change. See also Part 1, “Why America’s outdated energy grid is a climate problem.”
Building new transmission lines in the United States is like herding cats. Unless that process can be fundamentally improved, the nation will have a hard time meeting its climate goals.
The transmission system in the U.S. is old, doesn’t go where an energy grid powered by clean energy sources needs to go, and isn’t being built fast enough to meet projected demand increases.
Building new transmission lines in the U.S. takes so long — if they are built at all — that electrical transmission has become a roadblock for deploying clean energy.
“Right now, over 1,000 gigawatts worth of potential clean energy projects are waiting for approval — about the current size of the entire U.S. grid — and the primary reason for the bottleneck is the lack of transmission,” Bill Gates wrote in a recent blog post about transmission lines.
The stakes are high.
From 2013 to 2020, transmission lines have expanded at only about 1% per year. To achieve the full impact of the historic Inflation Reduction Act, that pace must more than double to an average of 2.3% per year, according to a Princeton University report led by professor Jesse Jenkins, who is a macro-scale energy systems engineer.
Herding cats with competing interests
Building new transmission lines requires countless stakeholders to come together and hash out a compromise about where a line will run and who will pay for it.
There are 3,150 utility companies in the country, the U.S. Energy Information Administration told CNBC, and for transmission lines to be constructed, each of the affected utilities, their respective regulators, and the landowners who will host a line have to agree where the line will go and how to pay for it, according to their own respective rules.
Aubrey Johnson, a vice president of system planning for the Midcontinent Independent System Operator (MISO), one of seven regional planning agencies in the U.S., compared his work to making a patchwork quilt from pieces of cloth.
“We are patching and connecting all these different pieces, all of these different utilities, all of these different load-serving entities, and really trying to look at what works best for the greatest good and trying to figure out how to resolve the most issues for the most amount of people,” Johnson told CNBC.
What’s more, the parties at the negotiating table can have competing interests. For example, an environmental group is likely to disagree with stakeholders who advocate for more power generation from a fossil-fuel-based source. And a transmission-first or transmission-only company involved is going to benefit more than a company whose main business is power generation, potentially putting the parties at odds with each other.
The system really flounders when a line would span a long distance, running across multiple states.
States “look at each other and say: ‘Well, you pay for it. No, you pay for it.’ So, that’s kind of where we get stuck most of the time,” Rob Gramlich, the founder of transmission policy group Grid Strategies, told CNBC.
“The industry grew up as hundreds of utilities serving small geographic areas,” Gramlich told CNBC. “The regulatory structure was not set up for lines that cross 10 or more utility service territories. It’s like we have municipal governments trying to fund an interstate highway.”
This type of headache and bureaucratic consternation often prevent utilities or other energy organizations from even proposing new lines.
“More often than not, there’s just not anybody proposing the line. And nobody planned it. Because energy companies know that there’s not a functioning way really to recover the costs,” Gramlich told CNBC.
Electrical transmission towers during a heatwave in Vallejo, California, US, on Sunday, Sept. 4, 2022. Blisteringly hot temperatures and a rash of wildfires are posing a twin threat to California’s power grid as a heat wave smothering the region peaks in the days ahead. Photographer: David Paul Morris/Bloomberg via Getty Images
Bloomberg | Bloomberg | Getty Images
Who benefits, who pays?
Energy companies that build new transmission lines need to get a return on their investment, explains James McCalley, an electrical engineering professor at Iowa State University. “They have got to get paid for what they just did, in some way, otherwise it doesn’t make sense for them to do it.”
Ultimately, an energy organization — a utility, cooperative, or transmission-only company — will pass the cost of a new transmission line on to the electricity customers who benefit.
“One principle that has been imposed on most of the cost allocation mechanisms for transmission has been, to the extent that we can identify beneficiaries, beneficiaries pay,” McCalley said. “Someone that benefits from a more frequent transmission line will pay more than someone who benefits less from a transmission line.”
But the mechanisms for recovering those costs varies regionally and on the relative size of the transmission line.
Regional transmission organizations, like MISO, can oversee the process in certain cases but often get bogged down in internal debates. “They have oddly shaped footprints and they have trouble reaching decisions internally over who should pay and who benefits,” said Gramlich.
The longer the line, the more problematic the planning becomes. “Sometimes its three, five, 10 or more utility territories that are crossed by needed long-distance high-capacity lines. We don’t have a well-functioning system to determine who benefits and assign costs,” Gramlich told CNBC. (Here is a map showing the region-by-region planning entities.)
Johnson from MISO says there’s been some incremental improvement in getting new lines approved. Currently, the regional organization has approved a $10.3 billion plan to build 18 new transmission projects. Those projects should take seven to nine years instead of the 10 to 12 that is historically required, Johnson told CNBC.
“Everybody’s becoming more cognizant of permitting and the impact of permitting and how to do that and more efficiently,” he said.
There’s also been some incremental federal action on transmission lines. There was about $5 billion for transmission-line construction in the IRA, but that’s not nearly enough, said Gramlich, who called that sum “kind of peanuts.”
The U.S. Department of Energy has a “Building a Better Grid” initiative that was included in President Joe Biden’s Bipartisan Infrastructure Law and is intended to promote collaboration and investment in the nation’s grid.
In April, the Federal Energy Regulatory Commission issued a notice of proposed new rule, named RM21-17, which aims to address transmission-planning and cost-allocation problems. The rule, if it gets passed, is “potentially very strong,” Gramlich told CNBC, because it would force every transmission-owning utility to engage in regional planning. That is if there aren’t too many loopholes that utilities could use to undermine the spirit of the rule.
What success looks like
Gramlich does point to a couple of transmission success stories: The Ten West Link, a new 500-kilovolt high-voltage transmission line that will connect Southern California with solar-rich central Arizona, and the $10.3 billion Long Range Transmission Planning project that involves 18 projects running throughout the MISO Midwestern region.
“Those are, unfortunately, more the exception than the rule, but they are good examples of what we need to do everywhere,” Gramlich told CNBC.
This map shows the 18 transmission projects that make up the $10.3 billion Long Range Transmission Planning project approved by MISO.
Map courtesy MISO
In Minnesota, the nonprofit electricity cooperative Great River Energy is charged with making sure 1.3 million people have reliable access to energy now and in the future, according to vice president and chief transmission officer Priti Patel.
“We know that there’s an energy transition happening in Minnesota,” Patel told CNBC. In the last five years, two of the region’s largest coal plants have been sold or retired and the region is getting more of its energy from wind than ever before, Patel said.
Great River Energy serves some of the poorest counties in the state, so keeping energy costs low is a primary objective.
“For our members, their north star is reliability and affordability,” Patel told CNBC.
An representative of the Northland Reliability Project, which Minnesota Power and Great River Energy are working together to build, is speaking with community members at an open house about the project and why it is important.
It’s one of the segments of the $10.3 billion investment that MISO approved in July, all of which are slated to be in service before 2030. Getting to that plan involved more than 200 meetings, according to MISO.
The benefit of the project is expected to yield at least 2.6 and as much as 3.8 times the project costs, or a delivered value between $23 billion and $52 billion. Those benefits are calculated over a 20-to-40-year time period and take into account a number of construction inputs including avoided capital cost allocations, fuel savings, decarbonization and risk reduction.
The cost will eventually be borne by energy users living in the MISO Midwest subregion based on usage utility’s retail rate arrangement with their respective state regulator. MISO estimates that consumers in its footprint will pay an average of just over $2 per megawatt hour of energy delivered for 20 years.
But there is still a long process ahead. Once a project is approved by the regional planning authority — in this case MISO — and the two endpoints for the transmission project are decided, then Great River Energy is responsible for obtaining all of the land use permits necessary to build the line.
“MISO is not going to be able to know for certain what Minnesota communities are going to want or not want,” Patel told CNBC. “And that gives the electric cooperative the opportunity to have some flexibility in the route between those two endpoints.”
For Great River Energy, a critical component of engaging with the local community is hosting open houses where members of the public who live along the proposed route meet with project leaders to ask questions.
For this project, Great River Energy specifically planned the route of the transmission to run along a previously existing corridors as much as possible to minimize landowner disputes. But it’s always a delicate subject.
A map of the Northland Reliability Project, which is one of 18 regional transmission projects approved by MISO, the regional regulation agency. It’s estimated to cost $970 million.
Map courtesy Great River Energy
“Going through communities with transmission, landowner property is something that is very sensitive,” Patel told CNBC. “We want to make sure we understand what the challenges may be, and that we have direct one-on-one communications so that we can avert any problems in the future.”
At times, landowners give an absolute “no.” In others, money talks: the Great River Energy cooperative can pay a landowner whose property the line is going through a one-time “easement payment,” which will vary based on the land involved.
“A lot of times, we’re able to successfully — at least in the past — successfully get through landowner property,” Patel said. And that’s due to the work of the Great River Energy employees in the permitting, siting and land rights department.
“We have individuals that are very familiar with our service territory, with our communities, with local governmental units, and state governmental units and agencies and work collaboratively to solve problems when we have to site our infrastructure.”
Engaging with all members of the community is a necessary part of any successful transmission line build-out, Patel and Johnson stressed.
At the end of January, MISO held a three-hour workshop to kick off the planning for its next tranche of transmission investments.
“There were 377 people in the workshop for the better part of three hours,” MISO’s Johnson told CNBC. Environmental groups, industry groups, and government representatives from all levels showed up and MISO energy planners worked to try to balance competing demands.
“And it’s our challenge to hear all of their voices, and to ultimately try to figure out how to make it all come together,” Johnson said.
In a bold bid to combat the crippling air pollution crisis in its capital, Delhi, Indian lawmakers have begun high-level discussions about a plan to phase out gas and diesel combustion vehicles by 2035 – a move that could cause a seismic shift in the global EV space and provide a cleaner, greener future for India’s capital.
Long considered one of the world’s most polluted capital cities, Indian capital Delhi is taking drastic steps to cut back pollution with a gas and diesel engine ban coming soon – but they want results faster than that. As such, Delhi is starting with a city-wide ban on refueling vehicles more than 15 years old, and it went into effect earlier this week. (!)
“We are installing gadgets at petrol pumps which will identify vehicles older than 15 years, and no fuel will be provided to them,” said Delhi Environment Minister Manjinder Singh Sirsa … but they’re not stopping there. “Additionally, we will intensify scrutiny of heavy vehicles entering Delhi to ensure they meet prescribed environmental standards before being allowed entry.”
The Economic Times is reporting that discussions are underway to pass laws requiring that all future bus purchases will be required to be electric or “clean fuel” (read: CNG or hydrogen) by the end of this year, with a gas/diesel ban on “three-wheelers and light goods vehicles,” (commercial tuk-tuks and delivery mopeds) potentially coming 2026 to 2027 and a similar ban privately owned and operated cars and bikes coming “between 2030 and 2035.”
Electrek’s Take
Xpeng EV with Turing AI and Bulletproof battery; via XPeng.
Last week, Parker Hannifin launched what they’re calling the industry’s first certified Mobile Electrification Technology Center to train mobile equipment technicians make the transition from conventional diesel engines to modern electric motors.
The electrification of mobile equipment is opening new doors for construction and engineering companies working in indoor, environmentally sensitive, or noise-regulated urban environments – but it also poses a new set of challenges that, while they mirror some of the challenges internal combustion faced a century ago, aren’t yet fully solved. These go beyond just getting energy to the equipment assets’ batteries, and include the integration of hydraulic implements, electronic controls, and the myriad of upfit accessories that have been developed over the last five decades to operate on 12V power.
At the same time, manufacturers and dealers have to ensure the safety of their technicians, which includes providing comprehensive training on the intricacies of high-voltage electric vehicle repair and maintenance – and that’s where Parker’s new mobile equipment training program comes in, helping to accelerate the shift to EVs.
“We are excited to partner with these outstanding distributors at a higher level. Their commitment to designing innovative mobile electrification systems aligns perfectly with our vision to empower machine manufacturers in reducing their environmental footprint while enhancing operational efficiency,” explains Mark Schoessler, VP of sales for Parker’s Motion Systems Group. “Their expertise in designing mobile electrification systems and their capability to deliver integrated solutions will help to maximize the impact of Parker’s expanding METC network.”
Advertisement – scroll for more content
The manufacturing equipment experts at Nott Company were among the first to go through the Parker Hannifin training program, certifying their technicians on Parker’s electric motors, drives, coolers, controllers and control systems.
“We are proud to be recognized for our unwavering dedication to advancing mobile electrification technologies and delivering cutting-edge solutions,” says Nott CEO, Markus Rauchhaus. “This milestone would not have been possible without our incredible partners, customers and the team at Nott Company.”
In addition to Nott, two other North American distributors (Depatie Fluid Power in Portage, Michigan, and Hydradyne in Fort Worth, Texas) have completed the Parker certification.
Electrek’s Take
T7X all-electric track loader at CES 2022; via Doosan Bobcat.
With the rise of electric equipment assets like Bobcat’s T7X compact track loader and E10e electric excavator that eliminate traditional hydraulics and rely on high-voltage battery systems, specialized electrical systems training is becoming increasingly important. Seasoned, steady hands with decades of diesel and hydraulic systems experience are obsolete, and they’ll need to learn new skills to stay relevant.
Certification programs like Parker’s are working to bridge that skills gap, equipping technicians with the skills to maximize performance while mitigating risks associated with high-voltage systems. Here’s hoping more of these start popping up sooner than later.
Based on a Peterbilt 579 commercial semi truck, the ReVolt EREV hybrid electric semi truck promises 40% better fuel economy and more than twice the torque of a conventional, diesel-powered semi. The concept has promise – and now, it has customers.
Austin, Texas-based ReVolt Motors scored its first win with specialist carrier Page Trucking, who’s rolling the dice on five of the Peterbilt 579-based hybrid big rigs — with another order for 15 more of the modified Petes waiting in the wings if the initial five work out.
The deal will see ReVolt’s “dual-power system” put to the test in real-world conditions, pairing its e-axles’ battery-electric torque with up to 1,200 miles of diesel-extended range.
ReVolt Motors team
ReVolt Motors team; via ReVolt.
The ReVolt team starts off with a Peterbilt, then removes the transmission and drive axle, replacing them with a large genhead and batteries. As the big Pete’s diesel engine runs (that’s right, kids – the engine stays in place), it creates electrical energy that’s stored in the trucks’ batteries. Those electrons then flow to the truck’s 670 hp e-axles, putting down a massive, 3500 lb-ft of Earth-moving torque to the ground at 0 rpm.
Advertisement – scroll for more content
The result is an electrically-driven semi truck that works like a big BMW i3 or other EREV, and packs enough battery capacity to operate as a ZEV (sorry, ZET) in ports and urban clean zones. And, more importantly, allows over-the-road drivers to hotel for up to 34 hours without idling the engine or requiring a grid connection.
That ability to “hotel” in the cab is incredibly important, especially as the national shortage of semi truck parking continues to worsen and the number of goods shipped across America’s roads continues to increase.
And, because the ReVolt trucks can hotel without the noise and emissions of diesel or the loss of range of pure electric, they can immediately “plug in” to existing long-haul routes without the need to wait for a commercial truck charging infrastructure to materialize.
“Drivers should not have to choose between losing their longtime routes because of changing regulatory environments or losing the truck in which they have already made significant investments,” explains Gus Gardner, ReVolt founder and CEO. “American truckers want their trucks to reflect their identity, and our retrofit technology allows them to continue driving the trucks they love while still making a living.”
If all of that sounds familiar, it’s probably because you’ve heard of Hyliion.
In addition to being located in the same town and employing the same idea in the same Peterbilt 579 tractor, ReVolt even employs some of the same key players as Hyliion: both the company’s CTO, Chandra Patil, and its Director of Engineering, Blake Witchie, previously worked at Hyliion’s truck works.
Still, Hyliion made their choice when they shut down their truck business. ReVolt seems to have picked up the ball – and their first customer is eager to run with it.
“Our industry is undergoing a major transition, and fleet owners need practical solutions that make financial sense while reducing our environmental impact,” said Dan Titus, CEO of Page Trucking. “ReVolt’s hybrid drivetrain lowers our fuel costs, providing our drivers with a powerful and efficient truck, all without the need for expensive charging infrastructure or worrying about state compliance mandates. The reduced emissions also enable our customers to reduce their Scope 2 emissions.”
Page Trucking has a fleet of approximately 500 trucks in service, serving the agriculture, hazardous materials, and bulk commodities industries throughout Texas. And, if ReVolt’s EREV semis live up to their promise, expect them to operate a lot more than 20 of ’em.