Connect with us

Published

on

Observations by NASA’s James Webb Space Telescope are upending the understanding of the early universe, indicating the presence of large and mature but remarkably compact galaxies teeming with stars far sooner than scientists had considered possible.

Astronomers said data obtained by the telescope reveals what appear to be six big galaxies as mature as our Milky Way existing about 540 million to 770 million years after the explosive Big Bang that kicked off the universe 13.8 billion years ago. The universe was roughly 3 percent of its current age at the time.

These galaxies, one of which appears to have a mass rivaling our Milky Way but 30 times more densely packed, seem to differ in fundamental ways from those populating the universe today.

“Oh, they are radically different — truly bizarre creatures,” said astrophysicist Ivo Labbe of Swinburne University of Technology in Australia, lead author of the study published in the journal Nature. “If the Milky Way were a regular-sized average adult, say about 5 feet, 9 inch (1.75 meters) and 160 pounds (70 kg), these would be 1-year-old babies weighing about the same but standing just under 3 inches (7 cm) tall. The early universe is a freak show.”

Webb was launched in 2021 and began collecting data last year. The findings were based upon the first dataset released by NASA last July from Webb, a telescope boasting infrared-sensing instruments able to detect light from the most ancient stars and galaxies.

“This is an astounding discovery and unexpected. We thought that galaxies form over much longer periods of time,” said Penn State astrophysicist and study co-author Joel Leja. “No one expected to find these. These galaxy candidates are simply too evolved for our expectations. They seem to have evolved faster than allowed by our standard models.”

Leja called them galaxy candidates because further observations are needed to confirm that they all are galaxies rather than some other source of light like a supermassive black hole.

“The exciting part is that even if only some turn out to be massive galaxies, these things are so massive that they alone would upend our measurements of the total mass in stars at this time. It would suggest 10 to 100 times more mass in stars existing at this epoch than expected and would imply that galaxies form way, way faster in the universe than anyone thought.”

The galaxies appear to contain mass equivalent to 10 billion to 100 billion times that of our sun. The latter figure is similar to the Milky Way’s mass.

The journey to galaxy formation following the Big Bang apparently hinged on mysterious material called dark matter that is invisible to us but is known to exist because of the gravitational influence it exerts on normal matter.

“The leading theory is that an ocean of dark matter filled the early universe after the Big Bang,” Labbe said.

“This dark matter — we don’t know what it is actually is — started out really smooth, with only the tiniest of ripples. These ripples grew over time due to gravity and eventually the dark matter started to collect in concentrated clumps, dragging hydrogen gas along for the ride. It’s that hydrogen gas that will eventually turn into stars. Clumps of dark matter, gas and stars is what we call a galaxy,” Labbe added.

Astronomers suspect the first stars began forming 100 million to 200 million years after the Big Bang, each perhaps 1,000 more massive than our sun but much shorter-lived.

“Their explosion set off the chain of events that formed subsequent generations of stars,” Labbe said.

“Webb continuous to amaze and surprise us,” Labbe added. “So yes, the early universe was a lot richer and lot more diverse — monsters and dragons. And the curtain is still being lifted.”

© Thomson Reuters 2023


Samsung’s Galaxy S23 series of smartphones was launched earlier this week and the South Korean firm’s high-end handsets have seen a few upgrades across all three models. What about the increase in pricing? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2023 hub.

Continue Reading

Science

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

Published

on

By

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

In a major display of technical ingenuity, China has successfully rescued two satellites—DRO-A and DRO-B—that were stuck in the wrong orbit for 123 days following a launch failure. The satellites, part of China’s distant retrograde orbit (DRO) constellation, were saved using a series of complex gravitational slingshot manoeuvres that turned a near-disaster into a milestone in space navigation. This recovery mission not only preserved critical hardware but also highlighted China’s growing expertise in orbital mechanics, space rescue operations, and deep-space navigation technologies.

Innovative Thinking in critical condition

According to a recent story by CGTN, on March 15, 2024, China launched two satellites that were mounted on a Long March-2C rocket with a Yuanzheng-1S upper stage. While the launch initially appeared to be successful, a malfunction in the upper stage made the satellites tumble and head towards Earth much closer than planned. With limited power and damaged systems, conventional recovery was impossible.

Zhang Hao, a researcher at the Technology and Engineering Center for Space Utilisation (CSU), described the moment the team learned of the issue in an interview with CGTN Digital: “If the satellites were destroyed, that would have been a waste of the years of effort that we put in and the money invested in the mission. It would also be a mental blow to the team.”

CSU engineers divided into two teams—one worked to stabilise the spinning satellites, while Zhang’s team focused on calculating a new trajectory using gravitational assists. “We calculated the best route to move the satellites back on track,” Zhang explained during the interview.

A Gravity-Assisted Comeback

The mission exploited the gravitational pulls of Earth, the Moon, and even the Sun to carefully nudge the satellites into their target DRO positions. The technique is commonly applied in deep space missions, and it needs a minimal amount of fuel, which makes it a feasible way to bypass the fuel shortage. The most critical manoeuvre lasted just 20 minutes but took weeks of preparation. “I got more and more stressed as the clock ticked,” Zhang admitted. “I just kept staring at the screen until it said ‘normal, ‘” he further added.

Now successfully positioned, DRO-A and DRO-B have joined the earlier DRO-L to form a three-satellite constellation. According to CSU researcher Mao Xinyuan, the network will drastically reduce spacecraft positioning times—from days to just a few hours—and support autonomous navigation between Earth and the Moon.

This mission not only salvaged valuable satellites but also demonstrated China’s growing capability in autonomous spaceflight and long-distance orbital engineering.

Continue Reading

Science

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

Published

on

By

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

SpaceX has successfully sent another batch of Starlink satellites into space on Monday, marking its second launch of the day. At 10:34 p.m. EDT (0234 GMT on April 29), a brand-new Falcon 9 rocket carried 23 Starlink broadband satellites, including 13 equipped with direct-to-cell capability, from NASA’s Kennedy Space Centre in Florida. Earlier today, a separate Falcon 9 launched 27 Starlink satellites from Vandenberg Space Force Base in California. The rapid double mission highlights SpaceX’s pace in expanding its Internet constellation, which already stands as the largest of its kind ever deployed.

According to a Space.com report, this launch was significant as it was the first flight for this specific Falcon 9 rocket’s first stage. SpaceX’s boosters see multiple missions, with one record-setting booster achieving 27 flights to date. Despite being brand new, the first stage of the Falcon 9 made a flawless landing approximately eight minutes after launch, gently landing on the “A Shortfall of Gravitas” droneship stationed in the Atlantic Ocean.

Meanwhile, the rocket’s upper stage continued its journey, carrying the 23 Starlink satellites toward low Earth orbit (LEO). The satellites were released about 65 minutes after liftoff, joining — or more aptly, surrounding — the ever-growing constellation of Starlink spacecraft. With tonight’s successful deployment, SpaceX is one step closer to achieving its mission of offering global broadband coverage using thousands of satellites working together.

SpaceX’s 50th Falcon 9 mission of 2025, devoted to growing the Starlink network, is a highlight of the company’s relentless launch cadence, with 33 missions dedicated to the project, which now counts more than 7,200 operating satellites.

SpaceX is still growing out its satellite constellation and refining its launch-and-recovery technology. The fact that the company was able to pull off two successful Starlink missions in a single day demonstrates just how well SpaceX has been able to finesse the balance between reusability with new hardware.

Continue Reading

Science

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

Published

on

By

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

A United Launch Alliance (ULA) Atlas V rocket has been launched carrying 27 of Amazon’s Project Kuiper broadband spacecraft. The launch took place from Florida’s Cape Canaveral Space Force Station on April 28, 2025, at 7:01 PM EDT (4:31 AM IST). It is reported to be the first of more than 80 launches, which are planned to deploy a megaconstellation for Project Kuiper. The ultimate end goal for Amazon is to provide end-to-end network service, which means routing data both to and from the satellites and from the internet to the satellites and from the satellites to a customer’s terminal antenna. The effort is expected to start covering customers later this year. The remaining 80-plus launches will be performed by Atlas V and its successor, ULA’s new Vulcan Centaur rocket.

According to a Space.com report, the 27 satellites will be initially placed at an altitude of 280 miles (450 kilometres) and will later manoeuvre themselves to their operational height of 392 miles (630 kilometres). Interestingly, reports suggest that Amazon will eventually harbour more than 3,200 satellites. In contrast, SpaceX’s Starlink network already has over 7,200 active broadband satellites. The report further claims that the brand is planning to launch 80 more satellites in the next few months.

Today’s launch used an Atlas V rocket, and the Kuiper fleet rollout will see additional launch missions with more Atlas Vs and Vulcan Centaur rockets.

Amazon has also advanced its satellites with innovative technologies, such as phased array antennas, optical inter-satellite links, updatable software, solar arrays, and efficient propulsion, to create a high-performance service architecture, accessible from any point on Earth.

Amazon’s Kuiper launch seems near following satellite deployment and testing, with an approach to compete with the operational architecture of Starlink by establishing a datalink from the internet down to Earth stations.

Continue Reading

Trending