Connect with us

Published

on

A transmission tower is seen on July 11, 2022 in Houston, Texas. ERCOT (Electric Reliability Council of Texas) is urging Texans to voluntarily conserve power today, due to extreme heat potentially causing rolling blackouts.

Brandon Bell | Getty Images

This story is part of CNBC’s “Transmission Troubles” series, an inside look at why the aging electrical grid in the U.S. is struggling to keep up, how it’s being improved, and why it’s so vital to fighting climate change.

Building large-scale transmission lines that carry electricity across the United States has the potential to be an extremely cost-effective way to reduce greenhouse gas emissions while also improving reliability of the country’s energy grid.

But the energy grid in the U.S. has developed over decades as a patchwork of thousands of individual utilities serving their own local regions. There is no incentive for energy companies to see the forest for the trees.

“The system we have for planning and paying for new transmission does not adequately value or promote the vital benefits of interregional transmission. Transmission planning does not sufficiently take into account the benefits of a holistic system over the long term,” Gregory Wetstone, CEO of the non-profit American Council on Renewable Energy, told CNBC.

The regulatory framework that has evolved surrounding those local utilities and their electricity transmission processes completely short-circuits when it comes to planning longer, bigger-scale transmission lines.

“Lines crossing multiple states have to receive permits from many local and state agencies, and a single county can block the construction of a new transmission line that would benefit the entire region,” Wetstone told CNBC. “Imagine trying to build the national highway system that we now have if any single county along the way could block the entire project. It simply wouldn’t have been possible.”

The Department of Energy is in the process of conducting a National Transmission Planning Study,to look into all of this. The government’s Pacific Northwest National Laboratory and its National Renewable Energy Laboratory are working on executing that work, but the results of that study will not be published for some time, a NREL researcher told CNBC.

Unless the U.S. can modernize its electric grid and update the regulatory processes surrounding construction of new lines, the country’s climate goals will be harder and more expensive to achieve.

Why a macro-grid is a cost-effective climate win

Currently, electricity generation results in 32 percent of carbon dioxide emissions in the United States .To mitigate the effects of global warming, electrical generation needs needs to move from burning fossil fuels, like oil and coal, to emissions-free sources of energy, like wind and solar.

One way of reducing emissions caused by electricity is to build as much clean energy generation as close as possible near to where the electricity is needed.

But building longer transmission lines, to carry wind and solar power from regions where those resources are abundant to the places where demand is highest, would actually be a cheaper way of reducing emissions.

“Multi-regional transmission designs enable the highest reduction in cost per unit of emissions reduction,” James McCalley, an electrical engineering professor at Iowa State University, told CNBC.

There are three reasons why:

Tapping into the most abundant resources. First, large-scale, multi-regional transmission lines — often called a “macro grid” — would connect the most powerful renewable energy sources with the highest demand centers, McCalley said.

“Many mid-U.S. states have excellent wind resources, and the southwest U.S. has excellent solar resources, but the population is insufficient to use them,” McCalley told CNBC. “Population density rises as you get closer to the coasts. Transmission lets you build rich resources and use them at the heaviest load centers.”

Heavy electrical transmission lines at the powerful Ivanpah Solar Electric Generating System, located in California’s Mojave Desert at the base of Clark Mountain and just south of this stateline community on Interstate 15, are viewed on July 15, 2022 near Primm, Nevada. The Ivanpah system consists of three solar thermal power plants and 173,500 heliostats (mirrors) on 3,500 acres and features a gross capacity of 392 megawatts (MW).

George Rose | Getty Images News | Getty Images

Balancing supply with demand over time zones and seasons. Second, transmission lines that span time zones would let the most effective power generating resources go to the region that needs the power when it needs it. “During the course of a 24 hour period, regions in different time zones peak at different times, and so the best resources in one non-peaking region and be used to supply demand at another peaking region,” McCalley told CNBC.

Similarly, large scale transmission would allow regions to share power generation to meet their annual capacity needs.

“Regions today require that they have total installed capacity equal to about 1.15 times their annual peak load. But the annual peak load occurs at different times of the year for different regions. So multi-regional transmission would enable sharing of capacity,” McCalley told CNBC.

For example, the Pacific Northwest peaks in energy demand in early spring and the Midwest peaks during summer months. They could, if connected, borrow from each other, “enabling each region to avoid constructing new capacity,” McCalley said.

Better reliability. Finally, improved energy sharing would also lead to a more reliable energy grid for consumers.

“After decades of underinvestment, our current grid is ill-equipped to handle the energy transition or increasingly frequent severe weather events,” Wetstone told CNBC. So in addition to making clean energy available cheaply, “a macro grid would also allow for the transfer of energy to prevent blackouts and price spikes during extreme weather events,” Wetstone said.

A 2021 NREL study, “Interconnections Seam Study,” found benefit-to-cost ratios that reach as high as 2.5, meaning for each dollar invested in transmission that connects the major components of the U.S. power grid — the Western Interconnection, the Eastern Interconnection, and the Electric Reliability Council of Texas — would return up to $2.50. 

Here is a visualization from the National Renewable Energy Lab’s “Interconnections Seam Study” showing how transmission lines that connect the major regions of the U.S. power system could allow the US to access more renewable energy and allow regions to balance energy demand.

Graphic courtesy National Renewable Energy Lab

Why the US does not have a macro, cross-regional grid

“Who pays for transmission I think is the biggest problem,” Rob Gramlich, the founder of the transmission policy company Grid Strategies, told CNBC. “It’s a freaking mess,” he said.

Currently, transmission lines that are constructed in the U.S. have to go through a years-long planning, approval and regulatory process where all of the utilities, regulators and landowners determine who benefits and how much each beneficiary should pay.

“Figuring out how to share costs among the many parties that would benefit from (and be impacted by) new transmission can be contentious, as can navigating permitting processes at the county, state, and federal levels along new routes,” explains Patrick Brown, a researcher working on transmission issues at the NREL.

In addition, local stakeholders often dig in their heels in when a new transmission line has the potential to undercut their existing business.

“The majority of new transmission is built for local needs and disconnected from any regional or interregional planning. Not surprisingly, the owners of these local projects seek to protect their transmission and generation earnings from being reduced by less expensive renewable resources that would be brought onto the grid as a result of interregional transmission,” Wetstone told CNBC. “So the broader societal benefits of a larger and more resilient grid are often ignored.”

It will be especially challenging to determine exactly who benefits exactly how much for a transmission line that spans the entire country.

“The system in and of itself is a benefit to the nation,” McCalley told CNBC. “The principle of ‘beneficiaries pay’ is harder to implement in that case.” So there’s no clear answer yet on how a macrogrid line would be paid for.

“My view has been the federal government, in concert with state government, in concert with developers — that it’s got to be a coordinated, complementary division of funds somehow, between those three, and whether it’s 95-5, or 30-30-40 percentage, I don’t know,” McCalley said.

For example, the larger utility companies in the US (like PG&E, American Electric Power Company, Duke Energy, or Dominion) could partner with the companies that make this kind of transmission technology, and with federal power authorities (like the Bonneville Power Administration, Western Area Power Administration, Southeastern Power Administration and Southwestern Power Administration) to coordinate a macro-grid construction project, McCalley said.

The cooling towers at the Stanton Energy Center, a coal-fired power plant in Orlando, are seen near electrical transmission towers. The facility is projected to convert from burning coal to using natural gas by 2027. U.N. climate talks ended on November 13, 2021 with a deal that for the first time targeted fossil fuels as the key driver of global warming, even as coal-reliant countries lobbed last-minute objections.

Sopa Images | Lightrocket | Getty Images

‘Get them in one room’

Despite the current morass of planning and building transmission lines in the U.S., “there are also many ways to overcome these barriers,” Brown at NREL told CNBC.

“Existing rights-of-way can be reused; new federal guidelines could encourage proactive interregional planning and coordination and help identify the highest-priority expansion options; and public engagement and community ownership can help get local stakeholders onboard.”

Regulators ought to be forced to work together, according to Konstantin Staschus, who has been working with transmission for his entire career, both in the U.S. and in Europe.

When the Midcontinent Independent System Operator, one of seven regional planning agencies in the United States, plans transmission line construction plans, it starts with a massive meeting. At the kickoff for its next round of transmission planning, MISO had a three hour planning meeting with 377 people in the meeting.

In the same way all of those stakeholders are pushed together to hash out their differences, so too should that happen for larger scale planning, according to Staschus, who was the Secretary-General of Europe’s transmission planning body, the European Network of Transmission System Operators for Electricity, for the first eight years of the regulatory body’s existence, from 2009 to early 2017.

“Get them in one room. Make them plan nationally. Make them redo it every year,” Staschus told CNBC.

“If they do that and if they’re experts — scratch their heads for months, figure out all the data and argue about the assumptions and the cost allocation, and they come with a proposal to their own management and convince them and then the management goes together to the various regulators and convinced them,” then the U.S. will be on a better path, Staschus told CNBC.

“But if you don’t treat it like a countrywide system, you won’t start this process.”

For Johnson of MISO, though, these kinds of idealistic discussions of building a national system come from people who don’t truly understand the challenge of getting a transmission line built even on a regional basis. For instance, the lines might run through entire states that don’t pull energy from that system.

“Those things are going to be far more complicated than what people are aware,” Johnson said. The challenge is not designing a transmission line, Johnson says, the challenge is determining who benefits how much and how much they have to pay.

What Johnson sees as more likely is stronger connections at the seams from one planning region to another. “I think of it kind of like a bucket brigade,” Johnson said, where one region can more seamlessly share power with its next door neighbor.

Jesse Jenkins, who is Princeton professor and a macro-scale energy systems engineer, says that while national-level grids are attractive, these interregional grids are essential.

“I don’t think we necessarily need a continent-scale macro grid, although there are plenty of studies showing the benefits of a such a ‘interstate highways’ system for transmission, so it would be nice to have,” Jenkins said. “What we absolutely need is a substantial increase in key inter-regional long-distance transmission routes. So it’s not all local lines (e.g. within single states). We need a lot of new or expanded/reconductored multi-state corridors as well.”

If the US can’t get national lines built, then interregional lines are better than nothing, agrees McCalley. But emissions reductions will remain more expensive than if we built a national grid.

“If we rely on what we have done in the past, it would be really hard because every state weighs in, and every state gets veto power, essentially. And so that won’t work,” McCalley said.

Why the U.S. power grid has become unreliable

Continue Reading

Environment

Sunreef Yachts introduces ‘Double Happiness’ – its first 100-foot solar electric ‘supercat’

Published

on

By

Sunreef Yachts introduces 'Double Happiness' – its first 100-foot solar electric 'supercat'

Sustainable boatbuilder Sunreef Yachts has unveiled another stunning solar electric catamaran, or “supercat,” which it is calling “Double Happiness.” This fully-electric yacht is 100 feet, Sunreef’s longest to date.

As we’ve pointed out in the past, Sunreef Yachts has been pushing the boundaries of sustainable marine travel since 2002. Over that time, the Polish boatbuilder launched the world’s first 74-foot luxury oceangoing catamaran with a flybridge.

Over twenty years later, hundreds of Sunreef Yachts can be seen traversing waters worldwide, showcasing the company’s lineup of sustainable luxury catamarans, all-electric propulsion, and advanced solar panels it calls “solar skin.”

Over the years, we’ve highlighted some of Sunreef’s solar-electric catamarans, ranging in length from 40 to 100 meters, including the Eco Explorer and the 80 Power Eco. Today, Sunreef has introduced its newest addition to its all-electric lineup: a 100-foot catamaran named “Double Happiness.”

Advertisement – scroll for more content

Sunreef’s newest electric yacht boasts length and power

According to Sunreef Yachts, the new Double Happiness is its first all-electric 100-foot yacht to combine cruising and eco-technology. This 100 Sunreef Power Eco supercat is propelled by four 180 kW electric motors and powered by a massive 990 kWh battery pack onboard.

There’s also the option for range extension via two generator sets (350 kW at 622 V DC). Additionally, rooftop solar panels (12 kWp) help power some of the onboard electronics. The result is a 16-passenger super catamaran that can accommodate up to ten guides across five en-suites. Given its size, the all-electric 100 Sunreef Power Eco yacht offers vast and luxurious spaces as well as quiet, secluded areas. Sunreef Yachts Founder and CEO, Francis Lapp, spoke:

The first models of the 100 Sunreef Power were a revolution, they offered unbelievable amounts of space, comfort, proximity with the sea, and seaworthiness. With this 100 Sunreef Power Eco, named Double Happiness, we take the 100 Sunreef Power to the next level. Now, this superyacht is able to navigate in full silence, no vibrations, no fumes, fostering a better connection with the sea and superior energy efficiency.

The 100 Sunreef Power Eco joins the boatbuilder’s growing lineup of quiet, emission-free solar-electric catamarans that are not only sustainable but also ultra-luxurious and well-crafted.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Chevy Brightdrop finally gets a lease deal worth writing about

Published

on

By

Chevy Brightdrop finally gets a lease deal worth writing about

GM may have decided to pull the plug on the forward-looking Chevy Brightdrop electric van a few months ago, but don’t let that stop you, but don’t let that fool you. Right now might be the best time ever to get your hands on one.

SKIP THE STORY: jump right to the deals (trusted affiliate link).

It’s hard to overstate how good the deals on Chevy’s Brightdrop got while GM was still trying to build up demand for its fleet-focused van, and now that the company has decided to stop production, the deals have gotten even better, with a newly announced $699 lease for 39 mo. with $2,999 down through January 2nd — and that’s before you factor in an additional $3,000 discount reserved for Costco Executive Members!

Despite that, I’ve heard more than one fleet manager express hesitation at the thought of adding a discontinued product to their fleet, even if it is a killer discount. To them, I offer the following, model-agnostic rebuttal:

Advertisement – scroll for more content

Legacy brands support their products


GM-Envolve-electric
Fleet of FedEx BrightDrop 600 electric vans; via GM.

Companies like GM aren’t going anywhere soon, and neither are the customers they’ve spent millions of dollars acquiring over the past several decades. They’ll keep building parts and offering service and maintenance on vehicles like the Brightdrop for at least a decade — not least of which because they have to!

GM sells each Brightdrop with a minimum 8 year/100,000 mile warranty on the battery and other key components, which can be extended either through GM itself or through reputable third-party companies like Xcelerate Auto for seven more.

There are precious few large fleets out there looking at 15 year, 200-plus thousand mile vehicle replacement cycles. For those that are, however, all indications so far are that the vehicle’s battery health and general performance will still be well within usable limits.

So, yes: parts longevity and manufacturer support will be there (something I’d be less confident about with a startup like Rivian or Bollinger, for example), but there’s more.

Section 179 and local incentives


National construction company deploys its 100th Chevrolet Silverado EV
McKinstry’s 100th Silverado EV; via GM.

The One Big, Beautiful Bill Act (OBBBA) of 2025 gutted America’s energy independence goals and ensuring its auto industry would fall even further behind the Chinese in the EV race, but the loss of Section 45W wasn’t the only change written into the IRS’ rulebook. Section 179, an immediate expense reduction that business owners can take on depreciable equipment assets, has been made significantly more powerful for 2025.

The section 179 expense deduction is limited to such items as cars, office equipment, business machinery, and computers. This speedy deduction can provide substantial tax relief for business owners who are purchasing startup equipment.

INVESTOPEDIA

The revised Section 179 tax credit (or, more accurately, expense reduction) allows for a 100% deduction for equipment purchases has doubled to $2.5 million, with a phase-out kicking in at $4 million of capital investments that drops to zero at $6.5 million. That credit and can be applied to new and used vehicles, as well as charging infrastructure, battery energy storage systems, specialized tools, and more (as long as they’re new to you).

What’s more, with regional incentives like the up to $15,000 off a new medium-duty van available from Illinois utility ComEd, the net cost of GM’s $699 promo lease drops to ~$315/mo., and there is still state money out there, as well, depending on where you live.

All of which is to say: don’t let a little thing like GM discontinuing the Brightdrop convince you to skip it. If you do that, the bean counters that killed off the Buick Grand National, GMC Syclone, and Pontiac Fiero win.

SOURCE | IMAGES: GM Envolve.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

EIA: Solar + storage soar as fossil fuels stall through September 2025

Published

on

By

EIA: Solar + storage soar as fossil fuels stall through September 2025

US Energy Information Administration (EIA) data released on November 25 and reviewed by the SUN DAY Campaign reveal that, during the first nine months of 2025 and for the past year, solar and battery storage have dominated growth among competing energy sources, while fossil fuels and nuclear power have stagnated.

Solar set new records in September

EIA’s latest “Electric Power Monthly” report (with data through September 30, 2025), once again confirms that solar is the fastest-growing source of electricity in the US.

In September alone, electrical generation by utility-scale solar (>1 megawatt (MW)) ballooned by well over 36.1% compared to September 2024, while “estimated” small-scale (e.g., rooftop) solar PV increased by 12.7%. Combined, they grew by 29.9% and provided 9.7% of US electrical output during the month, up from 7.6% a year ago.

Moreover, generation from utility-scale solar thermal and photovoltaic systems expanded by 35.8%, while that from small-scale systems rose by 11.2% during the first nine months of 2025 compared to the same period in 2024. The combination of utility-scale and small-scale solar increased by 29.0% and produced a bit over 9.0% (utility-scale: 6.85%; small-scale: 2.16%) of total US electrical generation for January-September, up from 7.2% a year earlier.

Advertisement – scroll for more content

And for the third consecutive month, utility-scale solar generated more electricity than US wind farms: by 4% in July, 15% in August, and 9% in September. Including small-scale systems, solar has outproduced wind for five consecutive months and by over 40% in September.

Wind leads among renewables

Wind turbines across the US produced 9.8% of US electricity in the first nine months of 2025 – an increase of 1.3% compared to the same period a year earlier and 79% more than that produced by US hydropower plants.

During the first nine months of 2025, electrical generation from wind plus utility-scale and small-scale solar provided 18.8% of the US total, up from 17.1% during the first three quarters of 2024.

Wind and solar combined provided 15.1% more electricity than did coal during the first nine months of this year, and 9.8% more than the US’s nuclear power plants. In fact, as solar and wind expanded, nuclear-generated electricity dropped by 0.1%.

Renewables are now only second to natural gas

The mix of all renewables (wind, solar, hydropower, biomass, and geothermal) produced 8.7% more electricity in January-September than they did a year ago, providing 25.6% of total US electricity production compared to 24.2% 12 months earlier.

Renewables’ share of electrical generation is now second to only that of natural gas, which saw a 3.8% drop in electrical output during the first nine months of 2025.  

Solar + storage have dominated 2025

Between October 1, 2024, and September 30, 2025, utility-scale solar capacity grew by 31,619.5 MW, while an additional 5,923.5 MW was provided by small-scale solar. EIA foresees continued strong solar growth, with an additional 35,210.9 MW of utility–scale solar capacity being added in the next 12 months.

Strong growth was also experienced by battery storage, which grew by 59.4% during the past year, adding 13,808.9 MW of new capacity. EIA also notes that planned battery capacity additions over the next year total 22,052.9 MW.

Wind also made a strong showing during the past 12 months, adding 4,843.2 MW, while planned capacity additions over the next year total 9,630.0 MW (onshore) plus 800.0 MW (offshore).

On the other hand, natural gas capacity increased by only 3,417.1 MW and nuclear power added 46.0 MW. Meanwhile, coal capacity plummeted by 3,926.1 MW and petroleum-based capacity fell by an additional 606.6 MW.

Thus, during the past year, renewable energy capacity, including battery storage, small-scale solar, hydropower, geothermal, and biomass, ballooned by 56,019.7 MW while that of all fossil fuels and nuclear power combined actually declined by 1,095.2 MW.

The EIA expects this trend to continue and accelerate over the next 12 months. Utility-scale renewables plus battery storage are projected to increase by 67,806.1 MW (a forecast for small-scale solar is not provided). Meanwhile, natural gas capacity is expected to increase by only 3,835.8 MW, while coal capacity is projected to decrease by 5,857.0 MW, and oil capacity is anticipated to decrease by 5.8 MW. EIA does not project any new growth for nuclear power in the coming year.

SUN DAY Campaign’s executive director Ken Bossong said:

The Trump Administration’s efforts to jump-start nuclear power and fossil fuels are not succeeding. Capacity additions from solar, wind, and battery storage continue to dramatically outpace those from gas, coal, and nuclear, and by growing margins.

Read more: EIA: Solar + storage dominate, fossil fuels stagnate to August 2025


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending