A transmission tower is seen on July 11, 2022 in Houston, Texas. ERCOT (Electric Reliability Council of Texas) is urging Texans to voluntarily conserve power today, due to extreme heat potentially causing rolling blackouts.
Brandon Bell | Getty Images
This story is part of CNBC’s “Transmission Troubles” series, an inside look at why the aging electrical grid in the U.S. is struggling to keep up, how it’s being improved, and why it’s so vital to fighting climate change.
Building large-scale transmission lines that carry electricity across the United States has the potential to be an extremely cost-effective way to reduce greenhouse gas emissions while also improving reliability of the country’s energy grid.
But the energy grid in the U.S. has developed over decades as a patchwork of thousands of individual utilities serving their own local regions. There is no incentive for energy companies to see the forest for the trees.
“The system we have for planning and paying for new transmission does not adequately value or promote the vital benefits of interregional transmission. Transmission planning does not sufficiently take into account the benefits of a holistic system over the long term,” Gregory Wetstone, CEO of the non-profit American Council on Renewable Energy, told CNBC.
The regulatory framework that has evolved surrounding those local utilities and their electricity transmission processes completely short-circuits when it comes to planning longer, bigger-scale transmission lines.
“Lines crossing multiple states have to receive permits from many local and state agencies, and a single county can block the construction of a new transmission line that would benefit the entire region,” Wetstone told CNBC. “Imagine trying to build the national highway system that we now have if any single county along the way could block the entire project. It simply wouldn’t have been possible.”
The Department of Energy is in the process of conducting a National Transmission Planning Study,to look into all of this. The government’s Pacific Northwest National Laboratory and its National Renewable Energy Laboratory are working on executing that work, but the results of that study will not be published for some time, a NREL researcher told CNBC.
Unless the U.S. can modernize its electric grid and update the regulatory processes surrounding construction of new lines, the country’s climate goals will be harder and more expensive to achieve.
Why a macro-grid is a cost-effective climate win
Currently, electricity generation results in 32 percent of carbon dioxide emissions in the United States .To mitigate the effects of global warming, electrical generation needs needs to move from burning fossil fuels, like oil and coal, to emissions-free sources of energy, like wind and solar.
One way of reducing emissions caused by electricity is to build as much clean energy generation as close as possible near to where the electricity is needed.
But building longer transmission lines, to carry wind and solar power from regions where those resources are abundant to the places where demand is highest, would actually be a cheaper way of reducing emissions.
“Multi-regional transmission designs enable the highest reduction in cost per unit of emissions reduction,” James McCalley, an electrical engineering professor at Iowa State University, told CNBC.
There are three reasons why:
Tapping into the most abundant resources. First, large-scale, multi-regional transmission lines — often called a “macro grid” — would connect the most powerful renewable energy sources with the highest demand centers, McCalley said.
“Many mid-U.S. states have excellent wind resources, and the southwest U.S. has excellent solar resources, but the population is insufficient to use them,” McCalley told CNBC. “Population density rises as you get closer to the coasts. Transmission lets you build rich resources and use them at the heaviest load centers.”
Heavy electrical transmission lines at the powerful Ivanpah Solar Electric Generating System, located in California’s Mojave Desert at the base of Clark Mountain and just south of this stateline community on Interstate 15, are viewed on July 15, 2022 near Primm, Nevada. The Ivanpah system consists of three solar thermal power plants and 173,500 heliostats (mirrors) on 3,500 acres and features a gross capacity of 392 megawatts (MW).
George Rose | Getty Images News | Getty Images
Balancing supply with demand over time zones and seasons. Second, transmission lines that span time zones would let the most effective power generating resources go to the region that needs the power when it needs it. “During the course of a 24 hour period, regions in different time zones peak at different times, and so the best resources in one non-peaking region and be used to supply demand at another peaking region,” McCalley told CNBC.
Similarly, large scale transmission would allow regions to share power generation to meet their annual capacity needs.
“Regions today require that they have total installed capacity equal to about 1.15 times their annual peak load. But the annual peak load occurs at different times of the year for different regions. So multi-regional transmission would enable sharing of capacity,” McCalley told CNBC.
For example, the Pacific Northwest peaks in energy demand in early spring and the Midwest peaks during summer months. They could, if connected, borrow from each other, “enabling each region to avoid constructing new capacity,” McCalley said.
Better reliability. Finally, improved energy sharing would also lead to a more reliable energy grid for consumers.
“After decades of underinvestment, our current grid is ill-equipped to handle the energy transition or increasingly frequent severe weather events,” Wetstone told CNBC. So in addition to making clean energy available cheaply, “a macro grid would also allow for the transfer of energy to prevent blackouts and price spikes during extreme weather events,” Wetstone said.
A 2021 NREL study, “Interconnections Seam Study,” found benefit-to-cost ratios that reach as high as 2.5, meaning for each dollar invested in transmission that connects the major components of the U.S. power grid — the Western Interconnection, the Eastern Interconnection, and the Electric Reliability Council of Texas — would return up to $2.50.
Here is a visualization from the National Renewable Energy Lab’s “Interconnections Seam Study” showing how transmission lines that connect the major regions of the U.S. power system could allow the US to access more renewable energy and allow regions to balance energy demand.
Graphic courtesy National Renewable Energy Lab
Why the US does not have a macro, cross-regional grid
“Who pays for transmission I think is the biggest problem,” Rob Gramlich, the founder of the transmission policy company Grid Strategies, told CNBC. “It’s a freaking mess,” he said.
Currently, transmission lines that are constructed in the U.S. have to go through a years-long planning, approval and regulatory process where all of the utilities, regulators and landowners determine who benefits and how much each beneficiary should pay.
“Figuring out how to share costs among the many parties that would benefit from (and be impacted by) new transmission can be contentious, as can navigating permitting processes at the county, state, and federal levels along new routes,” explains Patrick Brown, a researcher working on transmission issues at the NREL.
In addition, local stakeholders often dig in their heels in when a new transmission line has the potential to undercut their existing business.
“The majority of new transmission is built for local needs and disconnected from any regional or interregional planning. Not surprisingly, the owners of these local projects seek to protect their transmission and generation earnings from being reduced by less expensive renewable resources that would be brought onto the grid as a result of interregional transmission,” Wetstone told CNBC. “So the broader societal benefits of a larger and more resilient grid are often ignored.”
It will be especially challenging to determine exactly who benefits exactly how much for a transmission line that spans the entire country.
“The system in and of itself is a benefit to the nation,” McCalley told CNBC. “The principle of ‘beneficiaries pay’ is harder to implement in that case.” So there’s no clear answer yet on how a macrogrid line would be paid for.
“My view has been the federal government, in concert with state government, in concert with developers — that it’s got to be a coordinated, complementary division of funds somehow, between those three, and whether it’s 95-5, or 30-30-40 percentage, I don’t know,” McCalley said.
For example, the larger utility companies in the US (like PG&E, American Electric Power Company, Duke Energy, or Dominion) could partner with the companies that make this kind of transmission technology, and with federal power authorities (like the Bonneville Power Administration, Western Area Power Administration, Southeastern Power Administration and Southwestern Power Administration) to coordinate a macro-grid construction project, McCalley said.
The cooling towers at the Stanton Energy Center, a coal-fired power plant in Orlando, are seen near electrical transmission towers. The facility is projected to convert from burning coal to using natural gas by 2027. U.N. climate talks ended on November 13, 2021 with a deal that for the first time targeted fossil fuels as the key driver of global warming, even as coal-reliant countries lobbed last-minute objections.
Sopa Images | Lightrocket | Getty Images
‘Get them in one room’
Despite the current morass of planning and building transmission lines in the U.S., “there are also many ways to overcome these barriers,” Brown at NREL told CNBC.
“Existing rights-of-way can be reused; new federal guidelines could encourage proactive interregional planning and coordination and help identify the highest-priority expansion options; and public engagement and community ownership can help get local stakeholders onboard.”
Regulators ought to be forced to work together, according to Konstantin Staschus, who has been working with transmission for his entire career, both in the U.S. and in Europe.
When the Midcontinent Independent System Operator, one of seven regional planning agencies in the United States, plans transmission line construction plans, it starts with a massive meeting. At the kickoff for its next round of transmission planning, MISO had a three hour planning meeting with 377 people in the meeting.
In the same way all of those stakeholders are pushed together to hash out their differences, so too should that happen for larger scale planning, according to Staschus, who was the Secretary-General of Europe’s transmission planning body, the European Network of Transmission System Operators for Electricity, for the first eight years of the regulatory body’s existence, from 2009 to early 2017.
“Get them in one room. Make them plan nationally. Make them redo it every year,” Staschus told CNBC.
“If they do that and if they’re experts — scratch their heads for months, figure out all the data and argue about the assumptions and the cost allocation, and they come with a proposal to their own management and convince them and then the management goes together to the various regulators and convinced them,” then the U.S. will be on a better path, Staschus told CNBC.
“But if you don’t treat it like a countrywide system, you won’t start this process.”
For Johnson of MISO, though, these kinds of idealistic discussions of building a national system come from people who don’t truly understand the challenge of getting a transmission line built even on a regional basis. For instance, the lines might run through entire states that don’t pull energy from that system.
“Those things are going to be far more complicated than what people are aware,” Johnson said. The challenge is not designing a transmission line, Johnson says, the challenge is determining who benefits how much and how much they have to pay.
What Johnson sees as more likely is stronger connections at the seams from one planning region to another. “I think of it kind of like a bucket brigade,” Johnson said, where one region can more seamlessly share power with its next door neighbor.
Jesse Jenkins, who is Princeton professor and a macro-scale energy systems engineer, says that while national-level grids are attractive, these interregional grids are essential.
“I don’t think we necessarily need a continent-scale macro grid, although there are plenty of studies showing the benefits of a such a ‘interstate highways’ system for transmission, so it would be nice to have,” Jenkins said. “What we absolutely need is a substantial increase in key inter-regional long-distance transmission routes. So it’s not all local lines (e.g. within single states). We need a lot of new or expanded/reconductored multi-state corridors as well.”
If the US can’t get national lines built, then interregional lines are better than nothing, agrees McCalley. But emissions reductions will remain more expensive than if we built a national grid.
“If we rely on what we have done in the past, it would be really hard because every state weighs in, and every state gets veto power, essentially. And so that won’t work,” McCalley said.
New car buyers like to talk about the latest tech and resale value, but most people don’t buy new cars. The used car market is 3x bigger than new, and if you’re content to let the last guy take that big depreciation hit by scoring a great deal on a reliable, low-mile used car you could save thousands on your next EV.
But looking into the data shows trends that are much closer to the kind of think you’d expect to see before COVID, with high-end luxury models like S-Class Mercedes that trade on being new and shiny taking massive depreciation hits and more mainstream offerings from brands like Toyota and Honda that trade on economy and reliability holding strong.
That usual luxury brand hit seems like it’s being compounded over at Tesla, where Elon Musk’s highly publicized political leanings have polarized support for the brand, and alienated a huge portion of the market. Demand for new and used Tesla vehicles has plummeted, and iSeeCars reports that the Tesla Model S suffered the biggest percentage price drop of all makes and models over the last twelve months, showing the pioneering electric sedan’s average price in June 2025 at $46,700, nearly 16%, or $8,800 lower than it was 12 just months earlier.
Advertisement – scroll for more content
This isn’t a post about Tesla, though (not intentionally, at least). Instead, it’s about those EVs that have lost the most value since they were first sold new five-ish years ago. So, if you’re looking for a great deal on a pre-loved EV, you could do a lot worse than the list, below, presented in order from biggest “loss” of value.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
The Fiat Topolino Vilebrequin is a new beach town cruiser that captures the elegance, glamour, and relaxed vibe of the French Riviera. More significantly, the updated EV also heralds Stellantis’ plans to double EV production at its Kenitra Assembly Plant in Morocco.
Closer to a Mercury Villager Nautica or Ford F-150 Harley-Davidson than a new model on its own, the new Topolino Vilebrequin features colors and fabrics inspired by the French surfwear brand, and is based on the Dolcevita version of Stellantis’ electric microcar. With its open sides, a soft rollback roof, and turtle-tastic fabric prints, it’s ready to whisk you off on a carefree summer adventure in France or Italy – which are, coincidentally, the only two markets the “collector’s edition” Vilebrequin Topolino is currently available in.
“This encounter between the Fiat Topolino and our iconic sea turtle gave rise to a high-quality, lower-impact, and perfectly whimsical design,” says Roland Herlory, CEO of Vilebrequin. “(It is) the definitive summer toy, and the perfect witness to sun-soaked memories still to come.”
Like the standard Topolino, the new Vilebrequin model remains electronically limited to a top speed of 45 kph (just under 30 mph), and is equipped with a 5.5 kWh battery pack that ensures up to 75 km (about 45 miles) of electric range. Prices start at €13,490 ($15,810), and if you don’t want one you’re dead inside.
Advertisement – scroll for more content
Fiat Topolino Vilebrequin
The Vilebrequin Topolino is just the latest version of Stellantis’ electric microcar platform that underpins the Citroën Ami, Opel Rocks-e, and Fiat Topolino. Annual production of the little EVs has grown from 20,000 units and is reportedly on track for 70,000 in 2025.
Now, Mopar Insiders is reporting that number is about to get even bigger. Stellantis’ Chief Operating Officer (COO) for the Middle East & Africa (MEA) region, Samir Cherfan, announced plans to more than double the production capacity at the company’s Kenitra Assembly Plant in Morocco, from some 230,000 vehicles per year to more than 530,000.
The factory was opened in 2019, and the planned €1.2 billion ($1.4B) expansion is expected to add around 3,100 new jobs to the factory’s employee roster.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
Electric bikes are a menace. They go almost as fast as a car (if the car is parking), they’re whisper quiet (which makes them impossible to hear over the podcast playing in your headphones), and worst of all, they’re increasingly ridden by teenagers.
By now, we’ve all seen the headlines. Cities are cracking down. Lawmakers are holding emergency hearings. Parents are demanding bans. “Something must be done,” they cry at local city council meetings before driving back home in 5,000 lb SUVs.
And it’s true – some e-bike riders don’t follow the rules. Some ride too fast. Some are inexperienced. These are real problems that deserve real solutions. But if you think electric bikes are the biggest threat on our roads, just wait until you hear about the slightly more common, slightly more deadly vehicle we’ve been quietly tolerating for the last hundred years.
They’re called cars. And unlike e-bikes, they actually kill people. A lot of people. Over 40,000 people die in car crashes in the US every year. Thousands more are permanently injured. Entire neighborhoods are carved up by high-speed traffic. Kids can’t walk to school safely. But don’t worry – someone saw a teenager run a stop sign on an e-bike, so the real crisis must be those darn batteries on two wheels.
Advertisement – scroll for more content
It’s amazing how worked up people get over a few dozen e-bike crashes when many of us step over a sidewalk memorial for a car crash victim on the way to the grocery store. We’ve been so thoroughly conditioned to accept car violence as part of modern life that the idea of regulating them sounds unthinkable. But regulating e-bikes? Now that’s urgent.
To be clear, this isn’t about ignoring the risks that come with new technology. E-bikes are faster than regular bikes. They’re heavier, too. And they require education and enforcement like any other mode of transport capable of injuring someone, be it the rider or a pedestrian bystander. But the scale of the problem is what matters – and the scale here is completely lopsided. Let’s take New York City, for example. It’s got more e-bike usage than anywhere else in the US, and there are still only an average of two pedestrians per year killed by an e-bike accident. That number for cars? Around 100 per year in NYC. It’s not complicated math – cars are 50x more lethal in the city.
And yet, the person on the e-bike is the one getting the stink eye.
We’ve become so numb to the everyday destruction caused by automobiles that it barely registers anymore. Drunk driving? Distracted driving? Speeding through neighborhoods? It’s just background noise. But the moment someone on an e-bike blows through a stop sign at 16 mph, it’s front-page news and a city council emergency.
Here’s an idea: If we want safer streets, how about we start by addressing the machines that weigh two and a half tons and can hit 100 mph, not the ones that top out at 20 or 28 and are powered by a one-horsepower motor the size of an orange.
But we don’t. Because cars are familiar. Cars are “normal.” Cars are how we built our entire country. And so we turn our attention to the easy target – the new kid on the block. The same old playbook: panic, overreact, and legislate the hell out of it.
Sure, an e-bike might startle you on a sidewalk. But a car can climb that sidewalk and end your life. Which one do we really need to be afraid of?
This isn’t a strawman argument, either. Cars are literally used as mass casualty weapons. It happens all the time. It happened last night in Los Angeles when a disgruntled car driver deliberately plowed into a crowd outside a nightclub, injuring over 30 people. And that wasn’t the only car attack yesterday. Another car rammed into pedestrians on a sidewalk in NYC yesterday morning, leaving multiple pedestrians dead. These aren’t exceptions. This is the normal daily news in the US. It’s depressing, but it bears repeating. This is normal. These are everyday occurrences. Twice a day, yesterday.
While we’re busy debating throttle limits and helmet rules for e-bikes, maybe we should also talk about how tens of millions of drivers still routinely speed, blow stop signs, or scroll Instagram at 45 mph in a school zone. Or how car crashes are the number one killer of teenagers in America. Or we can continue to focus on the kid who forgot to put his foot down at a red light while riding an e-bike to school.
This isn’t satire anymore – it’s just sad. It’s a collective willingness to avoid a real, genuine threat to Americans while simultaneously scapegoating what is, by comparison, a non-threat.
The truth is, electric bikes aren’t the menace. They’re a solution. They’re one of the few glimmers of hope in a transportation system drowning in pollution, congestion, and daily tragedy. They make mobility cheaper, cleaner, and more accessible. And yet we treat them like an invasive species because they disrupt the dominance of the automobile.
It’s time to stop pretending we’re protecting the public from some great e-bike emergency. The real emergency is that we’ve accepted cars killing people as a fair trade for getting to Target five minutes faster.
So yes, let’s make e-biking safer. Let’s educate riders, build better bike infrastructure, and enforce traffic rules fairly. Those are all important things. We absolutely SHOULD invest in training programs to educate teens on safe riding. We absolutely SHOULD cite and fine dangerous riders who could threaten the lives of pedestrians. But let’s stop pretending that e-bikes are the problem when they’re clearly a symptom of a much bigger one.
If you’re really worried about the dangers on our streets, don’t look for the kid on the e-bike. Look for the driver behind them, sipping a latte and going 20 over the speed limit.
Now that’s the menace.
Image note: The first and last images in this article were both AI-generated, and represent everyday car/bike interactions
FTC: We use income earning auto affiliate links.More.