Connect with us

Published

on

The news that Tesla officially allows other electric vehicle makes to charge on its Supercharger network is just a few hours old but we’ve already gone out to one of the 10 Superchargers that are enabled to give our little Chevy Bolt some Tesla juice. Here’s how it went.

The station in Brewster is about 30 miles from my house and unfortunately I had pretty close to a full charge on the Bolt when the news came out. That means when I arrived at the station, I was still close to 80% full even after driving fast. So I wouldn’t get to see what the full charging curve/experience would be like.

Also, there was only one other Tesla charging at the station. That way I didn’t feel bad about blocking other potential users from using the station.

The Chevy Bolt has its charger port on the front driver side vs. the Tesla which has it at the rear driver’s side. That means when I pull in, I have to pull into the spot forward and I’m actually taking the spot next to where a Tesla would charge, effectively using 2 spots. Like I said, there was only one car there so I didn’t try the end chargers.

Before initiating a charge, I made sure the cable would be long enough to reach the Bolt charger and even though it was further a reach than a Tesla is, it still reached with relative ease.

There’s a new tab in the Tesla app called “Charge your Non-Tesla” and within that you will see a map to nearby chargers. Once you are at the charger, it asks you want stall you are at and once entered, you are ready to charge.

Once you initiate, you will hear a click in the Magic Dock and you can pull out the charger with the adapter. It isn’t yet super easy to pull out the adapter, it takes some umph. Plugging in, you’d think was relatively simple but I had some residual snow leftover from last night’s snowstorm which prevented the charger from going in easily. I also tried a few stalls and after some finagling, I got the charge initiated.

Since I was already at 80% charge on the Chevy Bolt, I only got about 24kW of charging speed which is sadly normal for the Bolt, especially in cold conditions. Other EVs will charge much faster.

Because I still have hundreds of thousands of referral SuperCharger miles, I hoped this visit would be free. No such luck. Tesla charged me $1.47 for 3kWh of power.

Electrek’s take:

This is a huge day for EV charging in the US. With the flip of a switch, Tesla has now enabled almost every EV to get the type of charging experience they deserve. Hopefully more and more stations come online soon.

There are still a lot of questions to be answered, like parking etiquette, which stations will allow non-Tesla EV charging and how much it will cost and how fast they will fill up. For now however, we were successful in getting the small step of Supercharger power for our Chevy Bolt which is a giant leap for EV adoption.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

European wind stocks tumble after Trump says he will stop new turbine construction

Published

on

By

European wind stocks tumble after Trump says he will stop new turbine construction

A Vestas wind turbine near Baekmarksbro in Jutland. 

Afp | Getty Images

European wind power stocks tumbled Wednesday after President-elect Donald Trump said he would prevent the construction of new turbines.

“We’re going to try and have a policy where no windmills are being built,” Trump told reporters at a press conference at his Mar-a-Lago home in Florida on Tuesday afternoon.

The Danish wind turbine manufacturer Vestas Wind Systems and Danish wind developer Orsted fell about 7% Wednesday in the wake of Trump’s remarks.

The president-elect went on a lengthy attack against wind turbines during yesterday’s press conference, arguing that they are too expensive, require subsidies and lack public support.

Trump’s opposition to wind power creates further challenges for an industry that has already struggled in the face of high interest rates that have raised the cost of developing new projects more expensive. In late 2023, for example, Orsted took a $4 billion writedown and canceled two offshore wind projects off the coast of New Jersey.

Still, wind power has expanded in the U.S., growing from 2.4 gigawatts in 2000 to 150 gigawatts by April 2024, according to data from the Energy Information Administration. Electricity generation from wind hit a record in April 2024 and beat generation from coal-fired plants, according to EIA data.

Continue Reading

Environment

New DOE report finds 90% of wind turbine materials are recyclable

Published

on

By

New DOE report finds 90% of wind turbine materials are recyclable

The US Department of Energy (DOE) has released an encouraging new report revealing that 90% of wind turbine materials are already recyclable using existing infrastructure, but tackling the remaining 10% needs innovation.

That’s why the Biden administration’s Bipartisan Infrastructure Law has allocated over $20 million to develop technologies that address these challenges.

Why this matters

The wind energy industry is growing rapidly, but questions about what happens to turbines at the end of their life are critical. Recyclable wind turbines means not only less waste but also a more affordable and sustainable energy future.

According to Jeff Marootian, principal deputy assistant secretary for the Office of Energy Efficiency and Renewable Energy, “The US already has the ability to recycle most wind turbine materials, so achieving a fully sustainable domestic wind energy industry is well within reach.”

The report, titled, “Recycling Wind Energy Systems in the United States Part 1: Providing a Baseline for America’s Wind Energy Recycling Infrastructure for Wind Turbines and Systems,” identifies short-, medium-, and long-term research, development, and demonstration priorities along the life cycle of wind turbines. Developed by researchers at the National Renewable Energy Laboratory, with help from Oak Ridge and Sandia National Laboratories, the findings aim to guide future investments and technological innovations.

What’s easily recyclable and what’s not

The bulk of a wind turbine – towers, foundations, and steel-based drivetrain components – is relatively easy to recycle. However, components like blades, generators, and nacelle covers are tougher to process.

Blades, for instance, are often made from hard-to-recycle materials like thermoset resins, but switching to recyclable thermoplastics could be a game changer. Innovations like chemical dissolution and pyrolysis could make blade recycling more viable in the near future.

Critical materials like nickel, cobalt, and zinc used in generators and power electronics are particularly important to recover.

Key strategies for a circular economy

To make the wind energy sector fully sustainable, the DOE report emphasizes the adoption of measures such as:

  • Better decommissioning practices – Improving how turbine materials are collected and sorted at the end of their life cycle.
  • Strategic recycling sites – Locating recycling facilities closer to where turbines are decommissioned to reduce costs and emissions.
  • Advanced material substitution – Using recyclable and affordable materials in manufacturing.
  • Optimized material recovery Developing methods to make recovered materials usable in second-life applications.

Looking ahead

The DOE’s research also underscores the importance of regional factors, such as the availability of skilled workers and transportation logistics, in building a cost-effective recycling infrastructure. As the US continues to expand its wind energy capacity, these findings provide a roadmap for minimizing waste and maximizing sustainability.

More information about the $20 million in funding available through the Wind Turbine Technology Recycling Funding Opportunity can be found here. Submission deadline is February 11.

Read more: The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Mazda finally reveals plans to build its first dedicated EV: Here’s what we know so far

Published

on

By

Mazda finally reveals plans to build its first dedicated EV: Here's what we know so far

Mazda is finally stepping up with plans to build its first dedicated EV. The upcoming Mazda EV will be made in Japan and based on a new in-house platform. Here’s what we know about it so far.

The first dedicated Mazda EV is coming soon

Although Mazda isn’t the first brand that comes to mind when you think of electric vehicles, the Japanese automaker is finally taking a step in the right direction.

Mazda revealed on Monday that it plans to build a new module pack plant in Japan for cylindrical lithium-ion battery cells.

The new plant will use Panasonic Energy’s battery cells to produce modules and EV battery packs. Mazda plans to have up to 10 GWh of annual capacity at the facility. The battery packs will power Mazda’s first dedicated EV, which will also be built in Japan using a new electric vehicle platform.

Mazda said it’s “steadily preparing for electrification technologies” under its 2030 Management Plan. The strategy calls for a three-phase approach through 2030.

The first phase calls for using its existing technology. In the second stage, Mazda will introduce a new hybrid system and EV-dedicated vehicles in China.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

The third and final phase calls for “the full-fledged launch” of EVs and battery production. By 2030, Mazda expects EVs to account for 25% to 40% of global sales.

Mazda launched the EZ-6, an electric sedan, in China last October. It starts at 139,800 yuan, or around $19,200, and is made by its Chinese joint venture, Changan Mazda.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

Based on Changan’s hybrid platform, the electric sedan is offered in EV and extended-range (EREV) options. The all-electric model gets up to 600 km (372 miles) CLTC range with fast charging (30% to 80%) in 15 minutes.

At 4,921 mm long, 1,890 mm wide, and 1,485 mm tall with a wheelbase of 2,895 mm, Mazda’s EZ-6 is about the size of a Tesla Model 3 (4,720 mm long, 1,922 mm wide, and 1,441 mm tall with a 2,875 mm wheelbase).

Mazda-first-dedicted-EV-interior
Mazda EZ-6 interior (Source: Changan Mazda)

Inside, the electric sedan features a modern setup with a 14.6″ infotainment, a 10.1″ driver display screen, and a 50″ AR head-up display. It also includes zero-gravity reclining seats and smart features like voice control.

The EZ-6 is already off to a hot sales start, with 2,445 models sold in November. According to Changan Mazda, the new EV was one of the top three mid-size new energy vehicle (NEV) sedans of joint ventures sold in China in its first month listed.

Will Mazda’s first dedicated EV look like the EZ-6? We will find out with Mazda aiming to launch the first EV models on its new in-house platform in 2027. Stay tuned for more.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending