Connect with us

Published

on

The Indian Space Research Organisation said it successfully carried out an “extremely challenging” controlled re-entry experiment of the decommissioned orbiting Megha-Tropiques-1 (MT-1) satellite. “The satellite re-entered the Earth’s atmosphere and would have disintegrated over the Pacific Ocean”, the Bengaluru-headquartered national space agency said on Twitter on Tuesday.

The final impact region estimated is in the deep Pacific Ocean within the expected latitude and longitude boundaries, an ISRO statement said.

The low Earth satellite was launched on October 12, 2011, as a joint satellite venture of ISRO and the French space agency, CNES for tropical weather and climate studies.

Since August 2022, the satellite’s perigee was progressively lowered through a series of 20 manoeuvres, spending about 120kg of fuel.

Multiple manoeuvres including the final de-boost strategy were designed after taking into consideration several constraints, including visibility of the re-entry trace over ground stations, ground impact within the targeted zone, and allowable operating conditions of subsystems, especially the maximum deliverable thrust and the maximum firing duration constraint on thrusters.

All manoeuvre plans were screened to ensure that there would be no post manoeuvre close approaches with other space objects, especially with the crewed space stations like International Space Stations and the Chinese Space Station, ISRO said.

The final two de-boost burns were executed at 11:02 UTC and 12:51 UTC respectively on March 7 by firing four 11 Newton thrusters on-board the satellite for about 20 minutes each, it said.

The final perigee was estimated to be less than 80 km, indicating that the satellite would enter the denser layers of the Earth’s atmosphere and subsequently undergo structural disintegration. The re-entry aero-thermal flux analysis confirmed that there would be no surviving large debris fragments.

The entire sequence of events was carried out from the Mission Operations Complex in ISTRAC (ISRO Telemetry, Tracking and Command Network), Bengaluru.

An uninhabited area in the Pacific Ocean between 5°S to 14°S latitude and 119°W to 100°W longitude was identified as the targeted re-entry zone for MT1, weighing about 1000 kg, ISRO said earlier this week.

About 125 kg on-board fuel remained unutilised at its end-of-mission that could pose risks for accidental break-up, an ISRO statement had noted.

This left-over fuel was estimated to be sufficient to achieve a fully controlled atmospheric re-entry to impact the uninhabited location in the Pacific Ocean, ISRO had said.

Controlled re-entries involve de-orbiting to very low altitudes to ensure impact occurs within a targeted safe zone.

Usually, large satellites/ rocket bodies, which are likely to survive aero-thermal fragmentation upon re-entry, are made to undergo controlled re-entry to limit ground casualty risk.

However, all such satellites are specifically designed to undergo controlled re-entry at end-of-life (EOL).

“MT-1 was not designed for EOL operations through controlled re-entry which made the entire exercise extremely challenging,” ISRO said.

Furthermore, the on-board constraints of the aged satellite, where several systems had lost redundancy and showed degraded performance, and maintaining sub-systems under harsher environmental conditions at much lower than originally designed orbital altitude added to the operational complexities, it said.

Innovative workarounds were implemented by the operations team based on the study, deliberations, and exchanges among the mission, operations, flight dynamics, aerodynamics, propulsion, controls, navigation, thermal, and other sub-system design teams across the ISRO centres, who worked in synergy to surmount these challenges, it said.

Although the mission life of the satellite originally was three years, it continued to provide valuable data services for more than a decade supporting regional and global climate models till 2021, ISRO said.

UN/IADC (Inter-Agency Space Debris Coordination Committee) space debris mitigation guidelines recommend de-orbiting a LEO (Low Earth Orbit) object at its EOL, preferably through controlled re-entry to a safe impact zone, or by bringing it to an orbit where the orbital lifetime is less than 25 years, according to ISRO.

It is also recommended to carry out “passivation’ of on-board energy sources to minimise the risk of any post-mission accidental break-up, ISRO said.

The orbital lifetime of MT-1 would have been more than 100 years in its 20 deg inclined operational orbit of 867 km altitude, it said.

“As a responsible space agency committed to safe and sustainable operations in outer space, ISRO proactively takes efforts for better compliance with the UN/IADC space debris mitigation guidelines on post-mission disposal of LEO objects”, the ISRO statement said.


From smartphones with rollable displays or liquid cooling, to compact AR glasses and handsets that can be repaired easily by their owners, we discuss the best devices we’ve seen at MWC 2023 on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2023 hub.

Continue Reading

Science

Government Eases Approval Process for FDI in Space Sector

Published

on

By

Government Eases Approval Process for FDI in Space Sector

India will allow 100% foreign direct investment in the manufacture of satellite systems without official approval and eased the rules for launch vehicles, a government statement said, aiming for a greater share of the global space market.

India’s space ambitions got a boost when it became the first country to land a spacecraft near the unexplored south pole of the moon in August – and the fourth to achieve a soft landing – just days after a similar Russian mission failed.

The government said in a statement late on Wednesday that foreign companies could invest in the manufacture of components and systems or sub-systems for satellites up to 100% without approval.

Foreign firms planning to build satellites in India would not require government approval up to 74% of the investment; for investment in launch vehicles, investment could go up to 49% without such approval, the statement said.

India has privatised space launches and is aiming for a five-fold increase in its share of the global launch market, which some expect to be worth $47.3 billion by 2032. India currently accounts for about 2% of the space economy.

The country hopes that liberalised rules for the space sector, long controlled by the government, will draw interest from Elon Musk’s SpaceX and Jeff Bezos’ Blue Origin, among others.

The foreign direct investment policy reform is expected to boost employment and will allow companies to set up manufacturing facilities in India, the government said in the statement.

“This will give India access to the latest tech advances and much-needed funds, not only from the country but from international investors too,” said A.K. Bhatt, director general of the Indian Space Association.

Space-related India stocks such as Paras Defence and Space Technologies , MTAR Technologies, Taneja Aerospace and Aviation and Apollo Micro Systems climbed 2% to 5% on Thursday.

© Thomson Reuters 2024


(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2024 hub.

Continue Reading

Science

Neuralink Switches Location From Delaware to Nevada

Published

on

By

Neuralink Switches Location From Delaware to Nevada

Elon Musk‘s brain-chip implant company, Neuralink, changed its location of incorporation from Delaware to Nevada, according to the business portals of both states.

The development comes about a week after Musk said Tesla would hold a shareholder vote to transfer its state of incorporation to Texas from Delaware after a judge invalidated his $56 billion (roughly Rs. 4,64,880 crore) pay package.

However, switching the state of incorporation for Tesla could come with hurdles such as investor lawsuits, particularly if it was seen as a move to secure his pay package, legal experts said.

Musk said last week that Neuralink had implanted its first brain chip in a human patient, who was recovering well after the procedure.

Neuralink did not immediately respond to a Reuters request for comment.

In September 2023, the company received approval from an independent review board to begin recruitment for the first human trial of its brain implant for paralysis patients.

Those with paralysis due to cervical spinal cord injury or amyotrophic lateral sclerosis may qualify for the study, it said but did not reveal how many participants would be enrolled in the trial, which will take about six years to complete.

The study will use a robot to surgically place a brain-computer interface (BCI) implant in a region of the brain that controls the intention to move, Neuralink said, adding that its initial goal is to enable people to control a computer cursor or keyboard using their thoughts alone.

© Thomson Reuters 2024


Is the iQoo Neo 7 Pro the best smartphone you can buy under Rs. 40,000 in India? We discuss the company’s recently launched handset and what it has to offer on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2024 hub.

Continue Reading

Science

Elon Musk’s Neuralink Installs Brain Implant in Human for the First Time

Published

on

By

Elon Musk’s Neuralink Installs Brain Implant in Human for the First Time

Neuralink, the California-based neurotechnology company, has implanted a wireless brain chip in a human for the first time, revealed co-founder Elon Musk. The big development was revealed by Musk on January 29 via a series of posts on X (formerly known as Twitter). Neuralink has been working on creating implantable brain-computer interfaces (BCIs). Last year in May, the company received approval from the US Food and Drug Administration (FDA) to conduct human trials. In September 2023, the neurotechnology firm began its human trial recruitment.

Announcing in a post, Musk said, “The first human received an implant from Neuralink yesterday and is recovering well. Initial results show promising neuron spike detection.” He also revealed separately that the first BCI product by the company had been named Telepathy. The brain chip enables the control of a computer or a smartphone just by thinking, claimed the co-founder. Interestingly, the company posted a video on YouTube in 2021 where a monkey could be seen controlling a game of ping-pong with his mind, after being implanted with the chip.

“Imagine if Stephen Hawking could communicate faster than a speed typist or auctioneer. That is the goal,” he added. The first users of the product will be those who have lost the use of their limbs.

While Neuralink received its FDA approval to conduct human trials last year, it rejected an application to pursue the same in 2022. At the time, the regulatory body had cited major safety concerns involving “the device’s lithium battery; the potential for the implant’s tiny wires to migrate to other areas of the brain; and questions over whether and how the device can be removed without damaging brain tissue,” as per a report by Reuters.

In a 2019 presentation, Musk explained that Neuralink BCIs were composed mostly of polyimide alongside a thin gold or platinum conductor. These were inserted into the brain through an automated process performed by a surgical robot. The chip contains a high number of ultra-thin nodules with wires called probes. The endings of these probes contain electrodes that are capable of locating and reading electrical signals in brain. These signals are then wirelessly transmitted to a device which can convert it into electronic commands to control a device.

In the past, the company has conducted extensive tests on animals and has claimed a high success rate. While performing a successful brain chip implant is a major milestone, the success of the product will be determined by its long-term performance and lack of side effects.


Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2024 hub.

Continue Reading

Trending