Connect with us

Published

on

In 2019, the Event Horizon Telescope (EHT) collaboration produced the first-ever image of a black hole, stunning the world.

Now, scientists are taking it further. The next generation Event Horizon Telescope (ngEHT) collaboration aims to create high-quality videos of black holes.

But this next-generation collaboration is groundbreaking in other ways, too. It’s the first large physics collaboration bringing together perspectives from natural sciences, social sciences and the humanities.

For a virtual telescope spanning the planet, the larger a telescope, the better it is at seeing things that look tiny from far away. To produce black hole images, we need a telescope almost the size of Earth itself. That’s why the EHT uses many telescopes and telescope arrays scattered across the globe to form a single, virtual Earth-sized telescope. This is known as very long baseline interferometry.

Harvard astrophysicist Shep Doeleman, the founding director of the EHT, has likened this kind of astronomy to using a broken mirror. Imagine shattering a mirror and scattering the pieces across the world. Then you record the light caught by each of these pieces while keeping track of the timing, and collect those data in a supercomputer to virtually reconstruct an Earth-sized detector.

The 2019 first-ever image of a black hole was made by borrowing existing telescopes at six sites. Now, new telescopes at new sites are being built to better fill in the gaps of the broken mirror. The collaboration is currently in the process of selecting optimal places across the world, to increase the number of sites to approximately 20.

This ambitious endeavour needs over 300 experts organised into three technical working groups and eight science working groups. The history, philosophy and culture working group has just published a landmark report outlining how humanities and social science scholars can work with astrophysicists and engineers from the first stages of a project.

The report has four focus areas: collaborative knowledge formation, philosophical foundations, algorithms and visualisation, and responsible telescope siting.

How can we all collaborate? If you’ve ever tried to write a paper (or anything!) with someone else, you know how difficult it can be. Now imagine trying to write a scientific paper with over 300 people.

Should one expect each author to believe and be willing to defend every part of the paper and its conclusions? How should we all determine what will be included? If everyone has to agree with what is included, will this result in only publishing conservative, watered-down results? And how do you allow for individual creativity and boundary-pushing science (especially when you are attempting to be the first to capture something)? To resolve such questions, it’s important to balance collaborative approaches and structure everyone’s involvement in a way that promotes consensus, but also allows people to express dissent. Diversity of beliefs and practices among collaboration members can be beneficial to science.

How do we visualise the data? The aesthetic choices regarding the final black hole images and videos take place in a broader context of visual culture.

In reality, blue flames are hotter than flames appearing orange or yellow. But in the above false-colour image of Sagittarius A* – the black hole at the centre of the Milky Way – the colour palette of orange-red hues was chosen as it was believed orange would communicate to wider audiences just how hot the glowing material around the black hole is.

This approach connects to historical practices of technology-assisted scientific images, such as those by Galileo, Robert Hooke, and Johannes Hevelius. These scientists combined their early telescopic and microscopic images with artistic techniques so they would be legible to non-specialist audiences (particularly those who did not have access to the relevant instruments).

How philosophy can help Videos of black holes would be of significant interest to theoretical physicists. However, there is a bridge between formal mathematical theory and the messy world of experiment where idealised assumptions often do not hold up.

Philosophers can help to bridge this gap with considerations of epistemic risk – such as the risk of missing the truth, or making an error. Philosophy also helps to investigate the underlying assumptions physicists might have about a phenomenon.

For example, one approach to describing black holes is called the “no-hair theorem”. It’s the idea that an isolated black hole can be simplified down to just a few properties, and there’s nothing complex (hairy) about it. But the no-hair theorem applies to stable black holes. It relies on an assumption that black holes eventually settle down to a stationary state.

Responsible telescope siting The choice of locations for telescopes, or telescope siting, has historically been determined by technical and economic considerations – including weather, atmospheric clarity, accessibility and costs. There has been a historic lack of consideration for local communities, including First Nations peoples.

As the struggle at Mauna Kea in Hawai’i highlights, scientific collaborations are obligated to address ethical, social and environmental considerations when siting.

The ngEHT aims to advance responsible siting practices. It draws together experts in philosophy, history, sociology, community advocacy, science, and engineering to contribute to the decision-making process in ways that include cultural, social and environmental factors when choosing a new telescope location.

Overall, this collaboration is an exciting example of how ambitious plans demand innovative approaches – and how sciences are evolving in the 21st century.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Scientists Chase Falling Satellite to Study Atmospheric Pollution from Spacecraft Reentries

Published

on

By

Scientists Chase Falling Satellite to Study Atmospheric Pollution from Spacecraft Reentries

Scientists take advantage of the spectacular airborne chase of a falling satellite to gather rare data on atmospheric pollution from burnt-up spacecraft. In September 2024, a group of European researchers hopped on an aeroplane outfitted with 26 cameras and flew into the night sky to watch the satellite Cluster Salsa make its flaming return to Earth over the Pacific Ocean. The mission, which was launched from Easter Island, sought chemical byproducts that would have been released during that short, meteor-like reentry event. Despite the glare of bright natural light that impeded a clear view, the researchers captured for the first time images of the satellite fracturing and chemicals being released as it fell to Earth.

Satellite Reentries May Impact Ozone and Climate, Scientists Warn

As per the report presented at the European Conference on Space Debris, reentry produced lithium, potassium, and aluminum emissions — elements with the potential to impact the ozone layer and Earth’s climate. Stefan Löhle of the University of Stuttgart mentioned that the satellite’s weak trail indicated that pieces splintered off and burned with less ferocity than predicted. The satellite started to disintegrate at about 80 kilometres above sea level, and the observations stopped at a height of around 40 kilometres due to the visual extinction.

Such events are increasingly important to monitor as satellite reentries grow in frequency. Although spacecraft such as those in SpaceX’s Starlink fleet are made to burn up completely, surviving debris and dust particles could still affect the upper atmosphere, scientists caution. The aluminum oxide from the melting satellites, for example, could be involved in long-term atmospheric effects, such as changes in thermal balance and ozone destruction.

This mission marks only the fifth time a spacecraft reentry has been observed from the air. Researchers hope to align their collected data with computer models to estimate how much mass satellites lose during disintegration and how that mass interacts chemically with the atmosphere. The data also suggest that some titanium components from the 550-kilogram Cluster Salsa may have survived reentry and landed in the Pacific Ocean.

As more satellites return to Earth, researchers plan to repeat the chase with Salsa’s sister satellites—Rumba, Tango, and Samba—expected to re-enter by 2026. Despite daytime limitations affecting some measurement techniques, these missions may help clarify how spacecraft pollution influences Earth’s upper atmosphere and climate.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kaalamega Karigindhi OTT Release Date: When and Where to Watch Telugu Romantic Movie Online?



Kenya Orders Sam Altman’s World to Delete Citizens’ Biometric Data Within 7 Days

Continue Reading

Science

NASA Stacks Artemis 2 Second Stage While the Future of SLS Remains Uncertain

Published

on

By

NASA Stacks Artemis 2 Second Stage While the Future of SLS Remains Uncertain

NASA’s Artemis 2 mission has reached a major milestone as the second stage that powers the Artemis 2 rocket, the Interim Cryogenic Propulsion Stage (ICPS), has been stacked. Kennedy Space Centre in Florida’s technicians mounted the ICPS on top of the SLS rocket inside the Vehicle Assembly Building on May 1. Driven by its upper stage, NASA’s Orion spacecraft and four-person crew—three NASA astronauts and one Canadian—out of Earth orbit will travel a free-return path around the moon, therefore allowing NASA’s return to deep space exploration.

NASA Advances Artemis 2 Moon Mission as Future of SLS and Orion Faces Uncertainty

As per NASA’s announcement, the ICPS arrived at the VAB last month and was hoisted into position inside the rocket stage adapter. The stage is critical for completing the crew’s journey past low Earth orbit during the 10-day Artemis 2 mission. Images shared by NASA show the second stage being lowered into place, while the Orion spacecraft and service module, delivered this week by Lockheed Martin, await integration. Exploration Ground Systems will process the Orion module before joining the rest of the launch vehicle.

Artemis 2 follows Artemis 1, which launched uncrewed in 2022 and revealed issues with Orion’s heat shield that delayed future missions. The Artemis 2 crew will fly a lunar pass rather than enter lunar orbit. The success of the mission will be vital in opening the path for Artemis 3, currently set for 2027, whereupon humans would land on the moon using a SpaceX Starship lander.

Even with continuous development, ambiguity surrounds the long-term fate of the program. A 2026 budget proposal released May 2 suggests ending the SLS and Orion programs after Artemis 3. If enacted, the mission currently under assembly may be among the final uses of the massive launch vehicle, designed to carry humans beyond low Earth orbit.

Artemis 2 is still relentlessly heading towards launch readiness. Though programming objectives are always changing, NASA’s efforts to prepare the SLS and Orion spacecraft highlight a more general aim of maintaining a continuous lunar presence—a step towards eventual Mars exploration.

Continue Reading

Science

What Happens in Your Brain When You Read? New Study Maps the Reading Mind

Published

on

By

What Happens in Your Brain When You Read? New Study Maps the Reading Mind

Scientists concluded in a recent research published in April 2025 in Neuroscience & Biobehavioral Reviews provides an in-depth look into how our brain understands the written language. The study has been conducted by researchers at the Max Planck Institute for Human Cognitive and Brain Sciences. The findings of this research have been derived from 163 neuroimaging studies to understand the neural mechanisms behind reading in depth. This comprehensive analysis has shown how different areas of the brain work in synchronisation, mainly the left-hemispheric regions and the cerebellum, to process different written content.

How the Brain Handles Letters to Full Texts

Sabrina Turker, Philip Kuhnke, Gesa Hartwigsen and Beatrice Fumagalli, the researchers involved in the study, found that specific brain areas get activated based on the type of reading. Researchers found that the left occipital cortex’s single cluster was activated after reading letters, whereas words, sentences and paragraphs activated the left hemisphere. While reading pseudo words, unique areas were involved, which has shown the inability of the brain to find the difference between the language that is known and the unknown.

Silent vs. Aloud Reading: What’s the Difference?

A major discovery in this research is the difference between overt (aloud reading) and covert (silent reading) brain activity. Aloud reading triggers the regions linked to sound and movement, whereas silent reading involves more complex multiple-demand areas. According to the researchers, silent reading needs more mental resources than aloud reading.

Explicit vs. Implicit Reading Tasks

The study also revealed the exploration of how the brain responds to explicit reading, i.e. Silent word reading and lexical decision tasks. The former one involves stronger activation in the regions, just like the cerebellar cortices and left orbitofrontal, whereas the implicit reading activated both sides of the inferior frontal, together with insular regions.

Why This Matters

The insights from the study can help support individuals suffering from reading challenges. After knowing how silent reading reacts differently to the brain, educators and doctors can better customise the medical practices for treating disorders such as dyslexia.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OnePlus 13s Design Fully Revealed in New Teaser; Confirmed to Debut in Two Colour Options



Samsung Galaxy Z Fold 7, Galaxy Z Flip 7 Battery Capacities Tipped via Certification Site

Continue Reading

Trending