Connect with us

Published

on

In 2019, the Event Horizon Telescope (EHT) collaboration produced the first-ever image of a black hole, stunning the world.

Now, scientists are taking it further. The next generation Event Horizon Telescope (ngEHT) collaboration aims to create high-quality videos of black holes.

But this next-generation collaboration is groundbreaking in other ways, too. It’s the first large physics collaboration bringing together perspectives from natural sciences, social sciences and the humanities.

For a virtual telescope spanning the planet, the larger a telescope, the better it is at seeing things that look tiny from far away. To produce black hole images, we need a telescope almost the size of Earth itself. That’s why the EHT uses many telescopes and telescope arrays scattered across the globe to form a single, virtual Earth-sized telescope. This is known as very long baseline interferometry.

Harvard astrophysicist Shep Doeleman, the founding director of the EHT, has likened this kind of astronomy to using a broken mirror. Imagine shattering a mirror and scattering the pieces across the world. Then you record the light caught by each of these pieces while keeping track of the timing, and collect those data in a supercomputer to virtually reconstruct an Earth-sized detector.

The 2019 first-ever image of a black hole was made by borrowing existing telescopes at six sites. Now, new telescopes at new sites are being built to better fill in the gaps of the broken mirror. The collaboration is currently in the process of selecting optimal places across the world, to increase the number of sites to approximately 20.

This ambitious endeavour needs over 300 experts organised into three technical working groups and eight science working groups. The history, philosophy and culture working group has just published a landmark report outlining how humanities and social science scholars can work with astrophysicists and engineers from the first stages of a project.

The report has four focus areas: collaborative knowledge formation, philosophical foundations, algorithms and visualisation, and responsible telescope siting.

How can we all collaborate? If you’ve ever tried to write a paper (or anything!) with someone else, you know how difficult it can be. Now imagine trying to write a scientific paper with over 300 people.

Should one expect each author to believe and be willing to defend every part of the paper and its conclusions? How should we all determine what will be included? If everyone has to agree with what is included, will this result in only publishing conservative, watered-down results? And how do you allow for individual creativity and boundary-pushing science (especially when you are attempting to be the first to capture something)? To resolve such questions, it’s important to balance collaborative approaches and structure everyone’s involvement in a way that promotes consensus, but also allows people to express dissent. Diversity of beliefs and practices among collaboration members can be beneficial to science.

How do we visualise the data? The aesthetic choices regarding the final black hole images and videos take place in a broader context of visual culture.

In reality, blue flames are hotter than flames appearing orange or yellow. But in the above false-colour image of Sagittarius A* – the black hole at the centre of the Milky Way – the colour palette of orange-red hues was chosen as it was believed orange would communicate to wider audiences just how hot the glowing material around the black hole is.

This approach connects to historical practices of technology-assisted scientific images, such as those by Galileo, Robert Hooke, and Johannes Hevelius. These scientists combined their early telescopic and microscopic images with artistic techniques so they would be legible to non-specialist audiences (particularly those who did not have access to the relevant instruments).

How philosophy can help Videos of black holes would be of significant interest to theoretical physicists. However, there is a bridge between formal mathematical theory and the messy world of experiment where idealised assumptions often do not hold up.

Philosophers can help to bridge this gap with considerations of epistemic risk – such as the risk of missing the truth, or making an error. Philosophy also helps to investigate the underlying assumptions physicists might have about a phenomenon.

For example, one approach to describing black holes is called the “no-hair theorem”. It’s the idea that an isolated black hole can be simplified down to just a few properties, and there’s nothing complex (hairy) about it. But the no-hair theorem applies to stable black holes. It relies on an assumption that black holes eventually settle down to a stationary state.

Responsible telescope siting The choice of locations for telescopes, or telescope siting, has historically been determined by technical and economic considerations – including weather, atmospheric clarity, accessibility and costs. There has been a historic lack of consideration for local communities, including First Nations peoples.

As the struggle at Mauna Kea in Hawai’i highlights, scientific collaborations are obligated to address ethical, social and environmental considerations when siting.

The ngEHT aims to advance responsible siting practices. It draws together experts in philosophy, history, sociology, community advocacy, science, and engineering to contribute to the decision-making process in ways that include cultural, social and environmental factors when choosing a new telescope location.

Overall, this collaboration is an exciting example of how ambitious plans demand innovative approaches – and how sciences are evolving in the 21st century.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

T Corona Borealis May Erupt Soon: Rare Nova Could Be Visible to Naked Eye

Published

on

By

T Corona Borealis May Erupt Soon: Rare Nova Could Be Visible to Naked Eye

T Corona Borealis is a binary star system in the Northern Crown constellation which is being monitored closely by astronomers worldwide for signs of a rare stellar eruption. The system consists of a white dwarf and a red giant orbiting each other with the white dwarf pulling material from its companion. The gradual accumulation of matter on the surface of dwarf white planet can lead to a thermonuclear explosion, known as a Nova. Scientists recorded the last erupted Nova in 1946. Now, there have been some indications that we might experience another nova outburst in the near future.

The researchers have recorded a brightening event in 2015 followed by a dimming in 2023, which has mirrored the pattern seen in the last eruption. This leads the experts to believe that there might be another nova outburt. If an eruption occurs T Corona Borealis could become visible to the naked eye and shine as brightly as the most prominent stars.

Accretion Activity and Expert Predictions

According to a study published in the Monthly Notices of the Royal Astronomical Society, the system has exhibited behaviour similar to the years leading up to its previous eruption. T Corona Borealis is one of only eleven recurrent novae observed in recorded history with eruptions noted in 1217, 1787, 1866 and 1946. As per the latest data available with the researchers, the accretion disc surrounding the white dwarf has became highly active and bright between 2015 and 2023. The study reveals that this heightened activity could trigger an eruption within a year or two.

There are multiple predictions from the scientists based on orbital analysis suggesting possible eruption dates. As per multiple reports, the Nova outburst might take place between March 27 or November 10 this year or June 25, 2026. The researchers has also suggested a theory regarding a potential third object influencing the binary system. Astronomers like Dr Léa Planquart of Université de Strasbourg and Dr Jeremy Shears of the British Astronomical Association have dismissed this theory citing the absence of supporting evidence. Both experts believe the activity of the accretion disc remains the most likely cause of an impending eruption.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Vivo X200 Ultra Confirmed to Feature Dedicated Camera Control Button; Design Teased



Facebook Introduces Friends Tab Without Recommended Content as Part of ‘OG’ Revamp

Related Stories

Continue Reading

Science

Scientists Spot a Key Difference in Matter and Antimatter Decay

Published

on

By

Scientists Spot a Key Difference in Matter and Antimatter Decay

A key difference has been observed in the behaviour of matter and antimatter particles by researchers working at a particle physics laboratory. A new measurement has been carried out that recorded the decay of a specific type of matter particle and its antimatter equivalent. This development is being seen as significant because it may explain why the universe is filled with matter while antimatter is nearly absent. The discovery has been described as a step towards solving one of physics’ biggest mysteries.

New Study Reveals Baryon Decay Difference

According to the research shared by the LHCb experiment at CERN and posted on the arXiv preprint server, a difference has been recorded in how a particle called the beauty-lambda baryon and its antimatter counterpart decay. These particles belong to the proton family and are classified as baryons. The report further added that the decay was observed into a proton and three mesons based on data collected between 2009 and 2018.

The evidence suggests that the decay of the beauty-lambda baryon differs from its antimatter twin. According to sources involved in the study the likelihood of this difference being a random occurrence is less than one in three million. Tim Gershon who is a particle physicist at the University of Warwick and part of the research team told Nature that this is the first time such a difference has been spotted in baryons.

Experts Say Findings Could Aid Understanding of Matter’s Prevalence

Tara Shears who is a particle physicist at the University of Liverpool stated to Nature that the observation could offer new insight into why matter is found in abundance while antimatter is not. She said that this imbalance is one of the major unresolved questions in physics.

Yuval Grossman a theoretical physicist from Cornell University mentioned to Nature that while the current measurement does not fully explain the imbalance it helps add a crucial piece to the puzzle.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Portronics Beem 520 Smart LED Projector With 2,200 Lumens Brightness, In-Built OTT Apps Launched in India



Honor Play 60 Price, Design, Colours, Key Features Surface Online; May Use a MediaTek Dimensity 6300 SoC

Continue Reading

Science

China Loses 26 Percent of Its Glaciers Due to Global Warming, Claims New Study

Published

on

By

China Loses 26 Percent of Its Glaciers Due to Global Warming, Claims New Study

China has reportedly witnessed a significant decline in glacier area over the last six decades. As per a new study published online,  the country has lost nearly 26 percent of its total glacier coverage since the 1960s. The study claims that the lost of such glacier area might be due to the rapid increase in global temperatures around the globe. Official data confirmed that close to 7000 small glaciers have entirely vanished from the landscape. The shrinking of glacier masses has been observed to accelerate over the past few years as warming trends continue to intensify.

Glacier Loss Confirmed by Chinese Academy of Sciences

According to a study released by the Northwest Institute of Eco-Environment and Resources under the Chinese Academy of Sciences it was recorded that China’s glacier area had reduced to nearly 46000 square kilometres by 2020. The total number of glaciers was stated to be around 69000 at that time. This marked a steep fall from an earlier figure of approximately 59000 square kilometres reported between 1960 and 1980 when glacier count stood at roughly 46000.

Impact of Glacier Retreat on Water Security and Environment

The melting of glaciers has raised concerns over freshwater availability across several regions. Environmental agencies have cautioned that the loss of glacier mass may result in higher competition for water resources in the years to come. The Tibetan Plateau which hosts a large portion of these glaciers has been referred to as the Third Pole owing to the vast ice reserves it holds.

Efforts to Slow Glacier Melting

Attempts have been made by Chinese authorities to slow the melting process through technological interventions. Artificial snow systems and snow blankets have been deployed as part of these initiatives.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Audio-Technica ATH-CKS50TW2 Star Wars-Themed Limited Edition TWS Earphones Launched: Price, Features



Portronics Beem 520 Smart LED Projector With 2,200 Lumens Brightness, In-Built OTT Apps Launched in India

Related Stories

Continue Reading

Trending