Connect with us

Published

on

In 2019, the Event Horizon Telescope (EHT) collaboration produced the first-ever image of a black hole, stunning the world.

Now, scientists are taking it further. The next generation Event Horizon Telescope (ngEHT) collaboration aims to create high-quality videos of black holes.

But this next-generation collaboration is groundbreaking in other ways, too. It’s the first large physics collaboration bringing together perspectives from natural sciences, social sciences and the humanities.

For a virtual telescope spanning the planet, the larger a telescope, the better it is at seeing things that look tiny from far away. To produce black hole images, we need a telescope almost the size of Earth itself. That’s why the EHT uses many telescopes and telescope arrays scattered across the globe to form a single, virtual Earth-sized telescope. This is known as very long baseline interferometry.

Harvard astrophysicist Shep Doeleman, the founding director of the EHT, has likened this kind of astronomy to using a broken mirror. Imagine shattering a mirror and scattering the pieces across the world. Then you record the light caught by each of these pieces while keeping track of the timing, and collect those data in a supercomputer to virtually reconstruct an Earth-sized detector.

The 2019 first-ever image of a black hole was made by borrowing existing telescopes at six sites. Now, new telescopes at new sites are being built to better fill in the gaps of the broken mirror. The collaboration is currently in the process of selecting optimal places across the world, to increase the number of sites to approximately 20.

This ambitious endeavour needs over 300 experts organised into three technical working groups and eight science working groups. The history, philosophy and culture working group has just published a landmark report outlining how humanities and social science scholars can work with astrophysicists and engineers from the first stages of a project.

The report has four focus areas: collaborative knowledge formation, philosophical foundations, algorithms and visualisation, and responsible telescope siting.

How can we all collaborate? If you’ve ever tried to write a paper (or anything!) with someone else, you know how difficult it can be. Now imagine trying to write a scientific paper with over 300 people.

Should one expect each author to believe and be willing to defend every part of the paper and its conclusions? How should we all determine what will be included? If everyone has to agree with what is included, will this result in only publishing conservative, watered-down results? And how do you allow for individual creativity and boundary-pushing science (especially when you are attempting to be the first to capture something)? To resolve such questions, it’s important to balance collaborative approaches and structure everyone’s involvement in a way that promotes consensus, but also allows people to express dissent. Diversity of beliefs and practices among collaboration members can be beneficial to science.

How do we visualise the data? The aesthetic choices regarding the final black hole images and videos take place in a broader context of visual culture.

In reality, blue flames are hotter than flames appearing orange or yellow. But in the above false-colour image of Sagittarius A* – the black hole at the centre of the Milky Way – the colour palette of orange-red hues was chosen as it was believed orange would communicate to wider audiences just how hot the glowing material around the black hole is.

This approach connects to historical practices of technology-assisted scientific images, such as those by Galileo, Robert Hooke, and Johannes Hevelius. These scientists combined their early telescopic and microscopic images with artistic techniques so they would be legible to non-specialist audiences (particularly those who did not have access to the relevant instruments).

How philosophy can help Videos of black holes would be of significant interest to theoretical physicists. However, there is a bridge between formal mathematical theory and the messy world of experiment where idealised assumptions often do not hold up.

Philosophers can help to bridge this gap with considerations of epistemic risk – such as the risk of missing the truth, or making an error. Philosophy also helps to investigate the underlying assumptions physicists might have about a phenomenon.

For example, one approach to describing black holes is called the “no-hair theorem”. It’s the idea that an isolated black hole can be simplified down to just a few properties, and there’s nothing complex (hairy) about it. But the no-hair theorem applies to stable black holes. It relies on an assumption that black holes eventually settle down to a stationary state.

Responsible telescope siting The choice of locations for telescopes, or telescope siting, has historically been determined by technical and economic considerations – including weather, atmospheric clarity, accessibility and costs. There has been a historic lack of consideration for local communities, including First Nations peoples.

As the struggle at Mauna Kea in Hawai’i highlights, scientific collaborations are obligated to address ethical, social and environmental considerations when siting.

The ngEHT aims to advance responsible siting practices. It draws together experts in philosophy, history, sociology, community advocacy, science, and engineering to contribute to the decision-making process in ways that include cultural, social and environmental factors when choosing a new telescope location.

Overall, this collaboration is an exciting example of how ambitious plans demand innovative approaches – and how sciences are evolving in the 21st century.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Massive Steam Plume Spotted at Alaska’s Mount Spurr as Volcano May Erupt Soon

Published

on

By

Massive Steam Plume Spotted at Alaska’s Mount Spurr as Volcano May Erupt Soon

A large steam plume has been seen emerging from Mount Spurr in Alaska, signalling increased volcanic activity. Images shared by the Alaska Volcano Observatory (AVO) on March 28 confirmed steam and gas emissions visible from the volcano’s summit and a northern vent. The volcano is located around 80 miles west of Anchorage and stands at 11,070 feet high. The experts have revealed that there could be a possible eruption in the coming weeks or months. However, nothing is certain yet.

Increased Signs of Unrest Reported

According to the latest update by the Alaska Volcano Observatory steam was observed rising from the summit on March 26. A smaller plume was also recorded from a fumarole on the volcano’s northern flank. No immediate changes in seismic activity or gas levels were detected during these observations as per the AVO statement.

The AVO had earlier mentioned in a March 11 update that a noticeable rise in gas emissions indicates fresh magma has moved into the crust beneath Mount Spurr. This has led scientists to assess the chance of an eruption in the near future. The observatory clarified that the exact timing of any eruption cannot be predicted yet.

Hazards and Possible Alerts

The observatory has cautioned that the volcano’s alert level might be raised if there are further signs of escalation. According to AVO, this may include persistent seismic tremors, increased gas emissions or visible surface changes. If an eruption occurs, possible hazards include ash clouds impacting flights, ashfall across nearby areas, pyroclastic flows and mudflows known as lahars.

The volcano last erupted in 1992. That eruption resulted in heavy ashfall and affected air travel in the region. AVO has advised residents and visitors to stay informed and follow safety instructions if alerts are raised.

Continue Reading

Science

Study Identifies Plasma Formation as a Pseudostreamer

Published

on

By

Study Identifies Plasma Formation as a Pseudostreamer

A towering spiral of plasma has been recorded extending millions of kilometres from the Sun. The video was taken by the European Space Agency’s Solar Orbiter during an eight-hour period on October 12, 2022. A coronal mass ejection caused the plasma to rise from the Sun’s surface. The footage captured something which was never observed before. It showed a swirling motion in the solar wind. As per the latest report, scientists also recorded bright streaks that were moving across the frame. Researchers also revealed that these streaks appeared as pixelated lines, which might also ressemble like UFOs. Scientists later confirmed they were distant stars visible due to the imaging process.

Study Identifies Plasma Formation as a Pseudostreamer

The study published in The Astrophysical Journal revealed that the massive structure that appeared in the photos was a large pseudostreamer. It was formed near the Sun’s north pole after a solar flare erupted. The report further highlighted that the plasma reached 1.5 times the Sun’s width and remained visible for three hours. Scientists believes the twisting movement of the plasma was due to Alfvénic fluctuations. These fluctuations happen when waves of charged particles respond to magnetic disturbances. Scientists says the pseudostreamer’s location influenced its unique shape. Magnetic fields at the Sun’s poles are stronger than those near the equator.

Unusual Streaks Explained

The video also showed bright, half-dark lines crossing the screen. These lines appeared to move in a pattern similar to arcade game graphics. ESA confirmed that these were distant stars. The video’s editing technique made them appear as streaks rather than points of light. The Solar Orbiter’s movement against the background created this effect.

Solar Activity Expected to Intensify

The Sun is currently experiencing solar maximum. Flares and solar winds have increased since early 2024. The pseudostreamer in the video formed before this peak. Scientists were surprised by its early appearance. ESA’s Solar Orbiter continues to capture detailed images of solar wind. NASA’s Parker Solar Probe and ESA’s Proba-3 mission are also studying these phenomena. More extreme solar winds are expected in the coming years.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Battleground Reality Show OTT Release: Where to Watch it Online?



Lava Breaches Grindavík’s Defences as Volcanic Fissure Erupts in Iceland

Related Stories

Continue Reading

Science

SpaceX Launches 27 Starlink Satellites on Falcon 9 Rocket, Booster Lands Safely

Published

on

By

SpaceX Launches 27 Starlink Satellites on Falcon 9 Rocket, Booster Lands Safely

SpaceX has sent another batch of satellites into orbit. On April 3, a Falcon 9 rocket launched 27 Starlink satellites from Vandenberg Space Force Base in California. The rocket lifted off at 9.02 p.m. Eastern Time and was followed by a successful landing of the first-stage booster on a drone ship stationed in the Pacific Ocean. This booster had already been used on four earlier flights. The satellites are expected to be deployed nearly an hour after takeoff if mission steps proceed as planned. The launch formed part of SpaceX’s continued effort to expand its low Earth orbit network.

Details from the Launch Mission Description

According to the mission information provided by SpaceX, the launch marked the fifth use of the same Falcon 9 booster. The drone ship used for recovery was named “Of Course I Still Love You”. This reusable system has become a routine part of SpaceX operations. The booster’s return was completed around eight minutes after liftoff. The launch contributed to the growing total of Starlink satellites which is aimed at building a global broadband network.

Launch Activity in 2025

This latest mission has brought the number of Falcon 9 launches in 2025 to 38. About two-thirds of those have supported the expansion of the Starlink constellation. Earlier this week, two separate launches were also completed. One of them included the Fram2 private astronaut mission, which carried crew members into orbit over Earth’s poles. That mission marked a new milestone in human spaceflight.

Starlink Satellite Network

Over 7100 satellites are now part of the Starlink constellation. The system is already the largest of its kind. SpaceX continues to work on expanding its coverage by launching more satellites regularly. The objective remains to provide consistent internet access worldwide, especially in regions with limited connectivity options.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Lumio Vision 7, Vision 9 Features Teased Ahead of April 10 Launch; Dolby Vision, 30W Speakers Confirmed



Anti-CBDC Bill Cleared by House Financial Services Committee in US: Details

Related Stories

Continue Reading

Trending