I test-drove the only street-legal electric microcar in the US, and it’s wild
More Videos
Published
3 years agoon
By
admin
Electric microcars are a tricky to define subset of motor vehicles, especially in the US. Open-air neighborhood electric vehicles, fancy golf carts, and other small vehicles tend to blur the line, leaving microcars in that weird category of “I know it when I see it.” Now after recently test-driving one myself from the New York-based startup Wink Motors, now I definitely know it.
There are a few different street-legal microcar-style EVs in the US, but most take the form of golf cart-style buggies. Some are even actual golf carts that have been souped up with the required hardware to make them street legal. That leaves Wink as pretty much the only low-cost, car-like, and street-legal microcar in the US, at least for now.
What is a microcar?
To be more precise, these types of tiny electric vehicles aren’t actually “cars” in a legal sense. They’re street-legal motor vehicles in the US, but they actually fit into a different category in the National Highway Traffic Safety Administration’s motor vehicle designations.
It’s a classification known as low-speed vehicles (LSVs), which have a reduced number of regulatory requirements compared to highway-capable cars. They are permitted to travel at speeds of up to 25 mph (40 km/h), and can travel on roads with posted speed limits up to 35 mph (56 km/h), provided they meet a shorter list of safety and manufacturing regulations.
However, it’s so difficult to actually meet those regulations that there just aren’t very many street-legal LSVs available in the US. We’re starting to see some new entries into the market such as interesting truck-like LSVs, though the pickings are still slim.
But if you want a fully enclosed car-like LSV with the type of accoutrements you’d normally find in a “real” car (A/C, power locks and windows, infotainment system, hatchback, etc.), then Wink Motors is basically the only street-legal option. There are some imported Chinese LSV-type vehicles starting to become available in the US (I imported one myself), but they aren’t street legal as they aren’t manufactured to federal standards nor are they registered with the DOT.
To actually get out on public roads as I did, that requires a street-legal LSV like the ones I tested from Wink. Check out what it’s like to drive one of these things in my video review below. Then keep reading for the entire experience.
Wink Motors test ride video
LSVs in the USA
I’ve actually watched Wink Motors grow over the last 18 months or so and even did some consulting during the design phase, giving me a unique look at the development process.
The company’s four models (Sprout, Sprout Solar, Mark 1, and Mark 2 Solar) are produced in Asia to US regulatory designs, and even exceed US regulations in several areas related to safety and ruggedness.
And when I climbed into one these vehicles for the first time last week in New York City, I was surprised to see just how much like a “real” car it felt. Considering they cost less than many golf carts (the Wink Sprout LSV starts at around US $9,000), there’s a surprising amount of car-like qualities.

While many cheaper Chinese micro-cars have a simple bench seat up front, Wink’s models have bucket seats that look more like you’d find in a conventional sedan. The paint is surprisingly high-quality metal-flake paint like you’d find on nicer cars, and they even have some cool features like an automatic parking brake that functions as a hill-hold feature. It engages after three seconds of holding the brake pedal, and automatically releases as soon as you touch the accelerator pedal.
The four different Wink models are fairly unique on the inside, with the lower-cost Sprout and Sprout Solar having a different body style from the more Mini-shaped Mark 1 and Mark 2 Solar. All the models are four-seaters, those the first three are two-door coupes that require you to tilt the front seat forward on either side to access the rear seats. The US $12,000 Mark 2 Solar is the only four-door model, and it’s interior was probably my favorite of the bunch. Though a quick word to the wise: You can save $150 on any of the models by using the discount code ELECTREK.
While the Mark 2 Solar had a nicer interior, the lighter Sprout model felt a bit peppier off the line, likely due to the smaller vehicle’s lower weight. They all share the same 3,500W motor, but the Sprout’s weight of 760 lb. (345 kg) compared to the Mark 2 Solar’s 1,250 lb. (567 kg) curb weight helps it squirt out even quicker.
Of course both models limited me to a maximum speed of 25 mph (40 km/h), but that didn’t really seem to be an issue 99% of the time. The average speed of traffic in Manhattan is 4.7 mph (7.5 km/h), meaning it doesn’t matter how much power your car has — everyone is crawling around like snails there.

I drove around Manhattan and Brooklyn, and in fact the only time I ever ran into the software-controlled speed limit was on the Brooklyn Bridge. With a posted limit of 35 mph (56 km/h) on the bridge, I was legally allowed to drive it in an LSV, but of course I had to stick to the right lane as most traffic moved faster than me.
Interestingly, traffic in the left lane wasn’t really moving that much faster than me, though I think it might have been because everyone was driving slowly past me while staring at my tiny car.
It’s a pretty strange sight, I’ll admit. But perhaps it won’t be that strange for long as more people begin adopting tiny cars.


As I experienced first hand during my NYC test driving, these are pretty much perfect vehicles for the city.
It was a cold and dreary winter day in New York, but I was comfortable in the climate-controlled cabin. It wasn’t raining, but if it was I would have been dry under a roof and behind automotive glass with windshield wipers (or rather a single wiper).
When it came to the chaotic traffic of NYC, I was able to slip around cars driving down the lane dividers and wiggle past double parkers without even leaving my lane.
And don’t even get me started on parking. The Wink Sprout is short enough to reasonably park perpendicular to the curb, nose in. But parallel parking is super easy too. I was able to wiggle in and out of parking spaces that were smaller than just the footprint of a typical sedan, let alone the extra space they would need to get in and out of the spot.

I don’t know exactly how much battery I actually used due to the rather simple pictographic display on the battery meter, but it didn’t look like I made much of a dent in the charge level of either vehicle as I still had full bars. With big (for a tiny car) 6 kWh LiFePO4 batteries, the Wink LSVs are said to have somewhere between 40-60 miles of range (64-96 km). And since two of the models include rooftop solar panels, the range is theoretically even higher.
The solar panels aren’t terribly high power, peaking at around 100-200W depending on how sunny it is. They’ll probably put around 5-8 miles (8-13 km) of range back into the battery each day. But for someone that parks outside and only drives 25-40 miles (40-65 km) per week in the city, that could mean that you never need to charge.
When it does come time to charge, the Sprout model has a charger similar to an e-bike. Basically, it’s a brick that plugs into a typical home 120V outlet and the other end plugs into the car’s outlet, which is hidden behind what looks like a normal fuel-door on a typical car. The Mark 1 and Mark 2 Solar models have on-board chargers, so you only need the connector and an extension cord, no off-board charger required.

How safe are LSVs?
There’s no beating around the bush here, LSVs are not as safe as conventional vehicles. They aren’t required to undergo crash testing, and thus they don’t have the same level of crumple zones or other crash-related safety design. They also aren’t required to include airbags.
At a minimum, they must have at least a DOT-certified lap-belt, though Wink built its LSVs with safer three-point seat belts used in traditional vehicles. They’re the same units you’d find in normal cars, and I even had that annoying situation where you lean forward quickly to reach something and the inertial lock kicks in, forcing you to sit back and more slowly leans forward again to allow the seat belt to spool out. Nothing screams “real car” like when the seat belt inertial lock activates.
Other areas are also above and beyond what you’d expect from a tiny car. There’s no regulation on the style or function of braking systems in LSVs – only that they have them and have a functional parking brake. Not only does Wink use oversized hydraulic disc brakes that belong on a much larger vehicle, but they use a dual-circuit hydraulic system that provides a redundancy even if there’s ever damage to one of the hydraulic lines. The parking brake is on an entirely separate mechanical system outside of the hydraulic system, offering yet another redundant braking backup.
At a certain point though it doesn’t matter how pro-level the seat belts are or how overbuilt the braking system is, since in a collision with a semi truck, my money isn’t on the Wink. But then again, my money wouldn’t be on the cyclist or the motorcycle rider either. And I commute on those two-wheelers daily. I’m also extra aware of my surroundings when I’m on a bike, which is how I felt when I was in a Wink. I was be extra cognizant of my surroundings, more than how many of us are guilty of almost getting on mental autopilot when behind the wheel of a car.
So I don’t mean to minimize the reduced safety aspect of LSVs. They don’t have the same impact resistance as cars. But we all take on a level of risk that we are comfortable with each time we enter the road. And since LSVs generally travel on lower speed roads (and at lower speeds themselves), airbags and crumple zones just aren’t as critical on an LSV as they are for highway-speed vehicles. Driving around NYC, I rarely saw myself or other cars reaching any speed that started with a “2,” and I never really felt like I was taking on any significant risk. I was at the same height as other drivers, in a brightly colored vehicle traveling the same speed as them, and none of us wanted to pay for damage to each other’s cars, so we all basically respected each other’s fenders and agreed to not swap paint.

What’s the use case?
As someone who mostly gets around by e-bike and e-motorcycle, driving any form of car is foreign to me – even a tiny electric car. But if I had to be stuck behind glass in a four-wheeler in a city, an LSV seems like the best way I’d want to do it.
The vehicle is small, nimble, easy to maneuver and best of all, it’s pretty darn cheap. At between US $9K-$12K, it’s the price of a nice golf cart, yet offers so much more (and don’t forget that $150 discount with the code ELECTREK).
And they even feel almost like a real car, despite some fit and finish shortcomings (the panels on the interiors of the doors look and feel fairly cheap, as does the funny little accessory plastic fan on the passenger A-pillar). Another area that removes you from feeling like a real car is the lack of sound-proofing. You hear the outside world nearly as well whether the windows are up or down. For example, the pedestrian warning noisemaker, which is an annoying external noise that is projected to warn blind or smartphone-blinded pedestrians of an electric vehicle’s presence, is quite audible even inside the car.
I know that the device is required by law and is part of what makes the vehicle street legal (in fact, electric LSVs without noisemakers aren’t in compliance with federal standards). But if this were my personal car, you can bet I’d be crawling under the chassis with a wirecutter looking for that speaker.
But despite those shortcomings that remind you of how this isn’t a real car, there are so many other aspects that try to convince you otherwise.
I was even unlucky enough to somehow get a flat tire halfway through my test drive – I blame all those construction trucks in NYC dropping nails and other crap on the roads. As annoying as it was, it was a chance to test the cute little jack and lug wrench that comes in the car’s tool kit. The whole vehicle almost feels like you could just have a buddy lift up the corner while you swap the tire, but the adorable little scissor jack had a similar effect and ensures a single person can change a wheel by him or herself. A few minutes later, the equally adorable spare tire was on and I was back in action.

I don’t expect that millions of Americans are going to switch to tiny cars overnight. But after testing a pair of them on the streets in real everyday driving scenarios, I can see how they’d work for a lot of people.
I still prefer the open air feeling of a bike, but there are times where it’d be nice to take three friends somewhere, and my bike can’t do that. It also doesn’t have a hatchback with a flip-down rear bench seat for cargo storage. Nor does it have locking doors if I want to leave stuff in the vehicle. So yeah, I can see some advantages.
If you live off of a 50 mph (80 km/h) road, then an LSV probably isn’t for you. Bummer.
But if you live in a city, a suburb or a beach community, I can definitely see the use case. I can even imagine sharing one with friends in a city. Even $10K is a bit rich for my blood when I probably wouldn’t use the vehicle all too often. But if I shared it with a friend or two for those times that we simply needed more space for cargo or people, now that’d be an interesting proposition.
Is it worth it?
At between $9K to $12K depending on the model, Wink Motors is one of the most affordable LSV options in the US. It’s priced similarly to a golf cart, and when you consider that comparison, it sounds like a steal.
Of course the flip side to that argument is what I like to call the “Used Nissan Leaf Case.” This is a fun little game that my readers like to play in the comment section of my articles where for nearly any type of e-bike, e-moped, or e-microcar I cover that is priced over a few thousand dollars, they counter with “I could buy a used Nissan Leaf for that much.”
And that’s fair. But I’d counter back that a used Nissan Leaf isn’t nearly as useful in a city. Sure, it can go faster and marginally farther (or maybe not, depending on how old it is). But it can’t charge from the sun like these. It can’t fit into the same tiny parking spots (or into areas that aren’t technically parking spots but you can still get away with). It uses significantly more energy to drive around. And it’s kind of a depressing vehicle instead of a fun one. You get a very different reaction when you roll up in a used Nissan Leaf compared to when you roll up in a Wink.
There’s a reason they named the company Wink. These microcars are fun. They don’t take themselves too seriously with aggressive names and misleading “the freedom of car ownership” marketing. Instead, it’s a fun little barely-car that gives you just enough of what you need for transportation: essentially, a small yet comfortable box on wheels.

Would I buy one?
If I lived in the US and spent most of my time in a city, I’d probably buy an electric microcar if I needed a car. Having tried several of them by now, their convenience and fun factor is just hard to resist, and they’re a great way to get an EV without paying a typical EV price.
But I don’t live in the US, and so I can’t buy a Wink. Instead, I recently bought a less attractive version: an electric rickshaw. It’s not nearly as cool, doesn’t have the A/C, locking doors, nicer suspension, or fancy brakes. There’s no backup camera like in the Wink and there are no seat belts either. But it solves the occasional need I have of carrying lumber, a pile of groceries or multiple passengers, something my bikes just can’t do as well.
We haven’t seen electric microcars take off in the US yet, and I think this is largely because there just haven’t been any reasonably affordable options yet. There are cool vehicles like the Waev GEM (formerly the Polaris GEM), but a four-seater with doors costs closer to $20K, or $35K with a lithium battery, which has limited their purchases to mostly commercial use like hotels and airports.
With a new wave of $10K electric tiny cars like these, I can see the case for electric microcars to finally succeed in the US. But it requires someone who doesn’t take the appearance of their car too seriously.
FTC: We use income earning auto affiliate links. More.
You may like
Environment
Daimler CEO just dropped some pretty WILD pro-hydrogen claims [update]
Published
4 hours agoon
November 22, 2025By
admin


Daimler Truck AG CEO Karin Rådström hopped on LinkedIn today and dropped some absolutely wild pro-hydrogen talking points, using words like “emotional” and “inspiring” while making some pretty heady claims about the viability and economics of hydrogen. The rant is doubly embarrassing for another reason: the company’s hydrogen trucks are more than 100 million miles behind Volvo’s electric semis.
UPDATE 22NOV2025: Daimler just delivered five new hydrogen semis for trials.
While it might be hard to imagine why a company as seemingly smart as Daimler Truck AG continues to invest in hydrogen when study after study has shut down its viability as a transport fuel, it makes sense when you consider that the Kuwait Investment Authority (KIA) holds approximately 5% of Daimler and parent company Mercedes’ shares.
That’s not a trivial stake. Indeed, 5% is enough to make KIA one of the few actors with both the access and the motivation to shape conversations about Daimler’s long-term technology bets, and as a major oil-producing country whose economy would undoubtedly take a hit if oil demand plummeted, any future fuel that’s measured molecules instead of electrons isn’t just a concept for the Kuwaiti economy: it’s a lifeline.
Advertisement – scroll for more content
What’s more, Kuwait’s “Oil Strategy 2040” includes plans to nearly double crude oil production and invest billions of dollars in new oil extraction projects and downstream refining facilities, even as the rest of the world rushes to decarbonize.
In that context, the push to make hydrogen seem like an attractive decarbonization option makes more sense. So, instead of giving Daimler’s hydrogen propaganda team yet another platform to try and convince people that hydrogen might make for a viable transport fuel eventually by giving five Mercedes-Benz GenH2 semi trucks to its customers at Hornbach, Reber Logistik, Teva Germany with its brand ratiopharm, Rhenus, and DHL Supply Chain, I’m just going to re-post Daimler CEO Karin Rådström’s comments from Hydrogen Week.
Earlier this month, Daimler Truck AG issued a press release entitled, “Five and a Half Times Around the World: Daimler Truck Fuel Cell Trucks Successfully Complete More Than 225,000 km (~139,000 miles) in Real-World Customer Operations.” Don’t bother looking for it on Electrek, though. I didn’t run it. And I didn’t run it because, frankly, a fleet of over-the-road semi trucks managing to cover a little over half the number of miles that David Blenkle put on his single Ford Mustang Mach-E isn’t particularly impressive.
In the meantime, Daimler competitors like Volvo, Renault, and even tiny Motiv are racking up millions and millions of all-electric miles and MAN Truck CEO Alexander Vlaskamp is saying that it’s impossible for hydrogen to compete with batteries. Heck, even Daimler’s own eActros BEV semi trucks are putting up better numbers than those hydrogen deals.
So, why then is Rådström pouring on the hydrogen love over at LinkedIn?
For some reason – posts about hydrogen always stir up emotions. I think hydrogen (not “instead of” but “in parallel to” electric) plays a role in the decarbonization of heavy duty transport in Europe for three reasons:
- If we would go “electric only” we need to get the electric grid to a level where we can build enough charging stations for the 6 million trucks in Europe. It will take many years and be incredibly expensive. A hydrogen infrastructure in parallel will be less expensive and you don’t need a grid connection to build it, putting 2000 H2 stations in Europe is relatively easy.
- Europe will rely on import of energy, and it could be transported into Europe from North Africa and Middle East as liquid hydrogen. Better to use that directly as fuel than to make electricity out of it.
- Some use cases of our customers are better suited for fuel cells than electric trucks – the fuel cell truck will allow higher payload and longer ranges.
At European Hydrogen Week, I saw firsthand the energy and ambition behind Europe’s net-zero goals. It’s inspiring—but also a wake-up call. We’re not moving fast enough.
What we need:
- Large-scale hydrogen production and transport to Europe
- A robust refueling network that goes beyond AFIR
- And real political support to make it happen – we need smart, efficient regulation that clears the path instead of adding hurdles.
To show what’s possible, we brought our Mercedes-Benz GenH2 to Brussels. From the end of 2026, we’ll deploy a small series of 100 fuel cell trucks to customers.
Let’s build the infrastructure, the momentum, and the partnerships to make zero-emission transport a reality. 🚛 and let’s try to avoid some of the mistakes that we see now while scaling up electric. And let’s stop the debate about “either or”. We need both.
Commenters were quick to point out that Daimler recently received €226M in grants from German federal and state governments to build 100 fuel cell trucks – but, while Daimler for sure doesn’t want to give back the money, it’s also pretty difficult to believe that Rådström’s pro-hydrogen posturing is sincere.
Especially since most of it seems like nonsense.
We’re not doing any of that

At the risk of sounding “emotional,” Rådström’s claims that building a hydrogen infrastructure in parallel will be less expensive than building an electrical infrastructure, and that “you don’t need a grid connection to build it,” are objectively false.
Further, if her claim that “putting 2,000 H2 stations in Europe is relatively easy” isn’t outright laughable, it’s worth noting that Europe had just 265 hydrogen filling stations in operation in 2024 (and only 40% of those, or about 100, were capable of serving HD trucks). At the same time, the IEA reported that there are nearly five million public charging ports already in service on the continent.
Next, the claim that, “Europe will rely on import of energy, and it could be transported into Europe from North Africa and Middle East as liquid hydrogen” (emphasis mine), is similarly dubious – especially when faced with the fact that, in 2023, wind and solar already supplied about 27–30% of EU electricity.
I will agree, however, with one of Rådström’s claims. She notes that, “some use cases of our customers are better suited for fuel cells than electric trucks – the fuel cell truck will allow higher payload and longer ranges.” That’s debatable, but widely accepted as true … for now. Daimler’s own research into lighter, more energy-dense, and lower-cost solid-state battery technology, however, may mean that it won’t be true for long, however.
Unless, of course, Mercedes’ solid-state batteries don’t work (and she would know more about that than I would, as a mere blogger).
Electrek’s Take

As you can imagine, the Karin Rådström post generated quite a few comments at the Electrek watercooler. “Insane to claim that building hydrogen stations would be cheaper than building chargers,” said one fellow writer. “I’m fine with hydrogen for long haul heavy duty, but lying to get us there is idiotic.”
Another comment I liked said, “(Rådström) says that chargers need to be on the grid – you already have a grid, and it’s everywhere!”
At the end of the day, I have to echo the words of one of Mercedes’ storied engineering partners and OEM suppliers, Mahle, whose Chairman, Arnd Franz, who that building out a hydrogen infrastructure won’t be possible without “blue” H made from fossil fuels as recently as last April, and maybe that’s what this is all about: fossil fuel vehicles are where Daimler makes its biggest profits (for now), and muddying the waters and playing up this idea that we’re in some sort of “messy middle” transition makes it just easy enough for a reluctant fleet manager to say, “maybe next time” when it comes to EVs.
We, and the planet, will suffer for such cowardice – but maybe that’s too much malicious intent to ascribe to Ms. Rådström. Maybe this is just a simple “Hanlon’s razor” scenario and there’s nothing much else to read into it.
Let us know what you think of Rådström’s pro-hydrogen comments, and whether or not Daimler’s shareholders should be concerned about the quality of the research behind their CEO’s public posts, in the comments section at the bottom of the page.
SOURCE | IMAGES: Karin Rådström, via LinkedIn.

If you drive an electric vehicle, make charging at home fast, safe, and convenient with a Level 2 charger installed by Qmerit. As the nation’s most trusted EV charger installation network, Qmerit connects you with licensed, background-checked electricians who specialize in EV charging. You’ll get a quick online estimate, upfront pricing, and installation backed by Qmerit’s nationwide quality guarantee. Their pros follow the highest safety standards so you can plug in at home with total peace of mind.
Ready to charge smarter? Get started today with Qmerit. (trusted affiliate link)
FTC: We use income earning auto affiliate links. More.
Environment
New electric AUDI E SUV concept promises 670 hp, 435 mile range
Published
4 hours agoon
November 22, 2025By
admin


Audi embraced its future in China with the launch of a new Chinese market electric sub-brand called AUDI that ditched the iconic “four rings” logo in favor of four capital letters – but one thing this latest concept hasn’t ditched is the brand’s traditionally teutonic long-roof design language.
Co-developed with Audi’s Chinese production partner, SAIC, the all-new AUDI E SUV concept is based on the PPE (Premium Platform Electric) skateboard, and is only the second model introduced by the company’s domestic sub-brand — which was all-new itself just one year ago.
“The AUDI E SUV concept celebrates the new AUDI brand’s first anniversary following the E concept’s debut in Guangzhou (2024),” said Fermín Soneira, CEO of the Audi and SAIC cooperation, at the E SUV’s unveiling. “It showcases an unmistakable AUDI design language that gives the SUV a prestigious, progressive stance — with no compromise between sporty aesthetics and interior roominess or versatility. This concept embodies our vision for premium electric mobility by fusing Audi’s engineering heritage with digital innovation to fulfill our commitment in China.”
As a vehicle, the AUDI E SUV concept promises to handle “like an Audi,” and is powered by a pair of electric motors good for a combined 500 kW (~670 hp), good enough to get the big crossover from 0-100 km/h (62 mph) in about five seconds. Those efficient motors are fed electrons by a 109 kWh battery riding on AUDI’s 800V Advanced Digital Platform system architecture, and can allegedly add 320 km (~200 miles) of range in under 10 minutes at a high-powered DC fast charging station.
Advertisement – scroll for more content
If you’re a fan of self-driving tech, the AUDI 360 Driving Assist System is the AUDI E SUV concept is for you, with features that, “enable a relaxed and safe driving experience – on highways, in dense city traffic, and during assisted parking.”
No word yet on pricing, but it likely won’t matter. As successful as the AUDI sub-brand has been, it’s still a long shot that we’ll ever get these Stateside, no matter what Canada does.
AUDI E SUV concept
SOURCE | IMAGES: Audi.

If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links. More.
Environment
New Renault electric van SHOULD be coming to America — as a Nissan
Published
6 hours agoon
November 22, 2025By
admin


Unless they have vivid memories of guys like Nigel Mansell, Fernando Alonso, and Sebastian Vettel driving the wheels off a screaming, Renault-powered Formula 1 car, it’s tough to get an American to care about a new Renault — but Nissan’s renewed willingness to work with its old partners means we may yet get the new Trafic E-Tech here. (!)
First shown as thinly-veiled concepts co-developed with Volvo back in February, the Renault Trafic E-Tech shown here made its official debut in full production spec and trim at this week’s Solutrans 2025 logistics show. The best part: it arrived looking nearly identical to the radical and well-received concept.
And, in case you’re thinking Renault just got lucky with the styling, you can stop thinking that. The official press release rambles on and on (and on) about the Trafic E-Tech’s styling, going in depth into such apparently mundane topics as the quality of the grain on the new Trafic E-Tech van’s black plastic bumpers:
The front bumper comprises a large section with a black grained finish. Each constituent part was the focus of extensive design work, in order to showcase the overall appearance while avoiding a bulky look. The black grained plastic of the lower bumper section features a laser pattern, similar to Scenic E-Tech electric. This attention to finish is a signature of the new Renault design language.
RENAULT
Nearly every paragraph of the release is like this. Here’s a section about the shape of the van’s windshield that reads, “the futuristic style of Trafic can also be seen in its visor-like windscreen, made up of the windscreen itself and the two side windows.”
Advertisement – scroll for more content
The van’s designers care, in other words — they care so freakin’ much about this niche product that they probably doodle it, idly, in the margins of their notebooks when they’re supposed to be listening in whatever staff meeting they just got dragged into. And that level of caring made me think of a once-and-future Renault partner who could use that level of caring in its North American product line.
Enter: Nissan

Back in March, I wrote that the key thing that Nissan had to do in order to stage a successful comeback was care about its products — and, in that article, I used the lowly Nissan Cube to highlight just how much Nissan used to care about its products.
Nissan used to care so much about its product, in fact, that it once did something that seems unthinkable in today’s modular-construction, Ultium electric-skateboard-platform EV age. And what made that “something” all the more astonishing was that they didn’t do this for the six-figure GT-R or some 370Z halo car – they did it for the Cube.
That decision speaks to an absolutely massive commitment. A commitment to build two sets of stampings, two sets of expensive window shapes, two sets of stuff I probably haven’t even considered, and it was all done for what? To eliminate a blind spot?
Can you imagine the amount of sheer, epic, truckloads of f*cks you would have to give in order to sit in a boardroom and argue that your company should spend millions of dollars in tooling and certification and assembly line re-jiggering because someone, somewhere else, might have a bit of a blind spot when they look over their right shoulder? (!)
The mere suggestion of such a thing would be a career-ender at most brands, and Nissan didn’t just listen to that unnamed engineer, they did it. They built an entire mirror-image of their home market Cube, and they did it so quietly that I bet more than a few of you reading these words never even realized they’d done it at all.
Today, Nissan’s best-effort at caring is launching an “all-new Rogue PHEV” that’s actually a rebadged Mitsibishi Outlander PHEV that was all-new itself way back in 2013. And that decade-plus-old car? It’s a significant upgrade to the last heap that wore the Rogue badge … largely because Mitsubishi, you know, still cares about the quality of its new products.
Renault cares enough for everyone


Renault gives truckloads of f*cks. Van-loads, anyway, and now that Nissan seems more open to enter into JVs with its partners in China and Japan, it seems entirely possible that they’ll come crawling back to their old Renault alliance partner. And, when they do, Renault’s level of caring could do wonders for a next-generation, all-electric Nissan Quest based on the Trafic E-Tech.
Heck, they wouldn’t have to do much more than change the logo on the front and make the infotainment graphics red and white instead of gray and yellow and they’d be there.
And that new-age Nissan Quest based on the Renault Trafic? It would offer up to 280 miles of European cycle range and motivate itself around US roads with a ~200 hp (150 kW) electric motor pushing out 345 Nm (~255 lb-ft) of off-the line grunt — which isn’t too far off Nissan’s last V8-powered van offering!
Great styling, plenty of room, peppy performance, and zero emissions? I’d take a look at it, for sure — and, since there aren’t any other electric van options in the US*, I think a lot of other people would, too.
SOURCE | IMAGES: Renault.
NOTE: I know the Tesla Model X is basically an electric minivan, but a) the bros hate it when you call their Model X a minivan, and b) the doors are stupid.

If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links. More.
Trending
-
Sports2 years agoStory injured on diving stop, exits Red Sox game
-
Sports3 years ago‘Storybook stuff’: Inside the night Bryce Harper sent the Phillies to the World Series
-
Sports2 years agoGame 1 of WS least-watched in recorded history
-
Sports3 years agoButton battles heat exhaustion in NASCAR debut
-
Sports3 years agoMLB Rank 2023: Ranking baseball’s top 100 players
-
Sports4 years ago
Team Europe easily wins 4th straight Laver Cup
-
Environment3 years agoJapan and South Korea have a lot at stake in a free and open South China Sea
-
Environment1 year agoHere are the best electric bikes you can buy at every price level in October 2024


