Connect with us

Published

on

Elon Musk‘s brain implant company Neuralink has approached one of the biggest US neurosurgery centers as a potential clinical trials partner as it prepares to test its devices on humans once regulators allow for it, according to six people familiar with the matter.

Neuralink has been developing brain implants since 2016 it hopes will eventually be a cure for intractable conditions such as paralysis and blindness.

It suffered a blow in early 2022, when the US Food and Drug Administration rejected its application to progress to human trials, citing major safety concerns, Reuters reported earlier this month.

The company has since been working to address the agency’s concerns, and it is unclear if and when it will be successful.

Neuralink has been talking to Barrow Neurological Institute, a Phoenix, Arizona-based neurological disease treatment and research organization, to help carry out the human trials, the sources said.

The talks may not result in a team-up. Neuralink has also discussed partnering with other centers, added the sources, who requested anonymity to discuss the confidential deliberations.

Reuters could not verify the latest status of the talks. Neuralink representatives did not respond to requests for comment.

Francisco Ponce, director of Barrow’s Center for Neuromodulation and Neurosurgery Residency Program, declined to comment on Neuralink but said Barrow was well-positioned to conduct such implant research because of its long track record in the field.

The FDA declined to comment on Neuralink’s efforts to find a partner for its clinical trials.

Neuralink’s latest efforts come as it faces two known US federal probes into its practices.

The US Department of Agriculture’s Inspector General began looking into potential animal-welfare violations at Neuralink last year. Current and former employees have detailed concerns to Reuters about the company’s rushed animal experiments, resulting in needless suffering and deaths.

The US Department of Transportation has said it is investigating the potential mishandling of hazardous pathogens during the company’s partnership on animal trials with University of California, Davis between 2018 and 2020.

Barrow has helped standardize brain implant surgeries in which the patient can remain asleep, a key step in making it more acceptable to a broad set of the population, Ponce said.

This is in line with Musk’s vision for Neuralink’s brain chip. The billionaire CEO of Tesla and majority owner of Twitter has said Neuralink’s brain implants will become as ubiquitous as Lasik eye surgery.

The devices Barrow has been implanting so far are different than Neuralink’s. Barrow works with deep brain stimulation devices, which received FDA approval in 1997 to help reduce Parkinson’s tremors and have been implanted in more than 175,000 patients.

Neuralink’s implant is a brain computer interface (BCI) device, which uses electrodes that penetrate the brain or sit on its surface to provide direct communication to computers. So far, no company has received US approval to bring a BCI implant to the market.

© Thomson Reuters 2023
 


Realme might not want the Mini Capsule to be the defining feature of the Realme C55, but will it end up being one of the phone’s most talked-about hardware specifications? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Is the Wheel of Ghosts an Ancient Observatory? New Study Suggests Otherwise

Published

on

By

Is the Wheel of Ghosts an Ancient Observatory? New Study Suggests Otherwise

The ancient Rujm el-Hiri site, situated in the Golan Heights and often referred to as the “Wheel of Ghosts,” has been re-evaluated, with its long-standing identification as an astronomical observatory coming under scrutiny. Researchers have determined that geodynamic changes over millions of years have altered the site’s orientation, raising questions about its original purpose. These findings, derived from advanced geophysical and remote sensing techniques, provide a new perspective on this enigmatic archaeological structure.

Geophysical Insights Challenge Established Theories

According to the study published in Remote Sensing, geodynamic movements averaging 8–15 millimetres per year over 150 million years shifted the site’s alignment significantly. Researchers from Tel Aviv University and Ben-Gurion University, led by Dr Olga Khabarova and Prof Lev Eppelbaum, concluded that the structure’s current orientation does not match celestial patterns, contradicting earlier interpretations of its function. The entrances and radial walls, when reconstructed to their original positions, were shown to lack alignment with solstices, equinoxes, or other astronomical markers.

Advanced Techniques Reveal Archaeological Landscape

As reported by SciTech Daily, the researchers employed geomagnetic analysis and satellite technology to document the surrounding archaeological features within a 30-kilometre radius of the Sea of Galilee. Unique circular structures, some up to 90 metres in diameter, were identified alongside burial mounds and round enclosures. These findings suggest agricultural and herding purposes rather than purely ceremonial or observational roles.

A Broader Perspective on Rujm el-Hiri’s Role

Dr Michal Birkenfeld of Ben-Gurion University emphasised in his statement to SciTech Daily that this reassessment enriches understanding of ancient life in the Golan Heights. The research team noted that the study reopens debates about the site’s purpose while highlighting its integration into a broader archaeological landscape. By questioning past assumptions, the study encourages further exploration of how ancient communities interacted with their environment.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.


Hide N Seek OTT Release Date: When and Where to Watch This Telugu Thriller Online?



Oppo Reno 13 5G Series Price in India Tipped Ahead of January 9 Launch

Continue Reading

Science

Scientists Investigate Hypernuclei To Understand Subatomic Forces and Neutron Stars

Published

on

By

Scientists Investigate Hypernuclei To Understand Subatomic Forces and Neutron Stars

A breakthrough has been reported in particle physics, focusing on hypernuclei—rare atomic systems that form through the inclusion of hyperons, particles containing at least one “strange” quark. Unlike the ordinary nuclei of atoms made of protons and neutrons, hypernuclei exhibit unique properties that may offer insights into subatomic forces and the extreme conditions present in neutron stars. Scientists aim to deepen the understanding of these fleeting structures and their implications for astrophysics and nuclear physics.

Insights from Advanced Research

According to a study published in The European Physical Journal A, researchers led by Ulf-G. Meißner from the Institute for Advanced Simulation in Jülich and the University of Bonn applied nuclear lattice effective field theory to investigate hypernuclei. This approach simplifies the study of nuclear interactions by focusing on protons, neutrons, and hyperons rather than quarks and gluons, providing a computationally feasible way to study these particles.

This study specifically examined Λ-hyperons, one of the lightest hyperons, and their interactions within hypernuclei. A lattice-based model was utilised, where particles are simulated within a discrete grid, reducing the complexity of the calculations. Forces governing the structure of hypernuclei were calculated, achieving agreement with experimental data within a 5 percent margin of accuracy. The method also allowed the study of hypernuclei with up to 16 constituents, expanding the scope of earlier models.

Implications for Neutron Stars

Hypernuclei are theorised to form in neutron stars due to the immense pressure and density in their cores. The measurable properties of neutron stars, such as mass and radius, could be influenced by the presence of hyperons. By using advanced X-ray telescopes and gravitational wave detectors, scientists hope to detect deviations from existing models, potentially confirming hyperons’ role in these environments.

Further research is required to refine models and explore pion exchanges, which may alter the forces within hypernuclei. Enhanced experimental data and precision in accelerator experiments are expected to contribute to this field in the future.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Mathematicians Uncover Science Behind Hula Hooping and Body Dynamics

Published

on

By

Mathematicians Uncover Science Behind Hula Hooping and Body Dynamics

The mechanics of hula hooping have been analysed by researchers, uncovering how body shapes and motions influence the ability to keep a hoop spinning against gravity. Insights from the study have raised intriguing questions about body dynamics, energy efficiency, and potential engineering applications. The findings, based on experiments and mathematical modelling, offer new perspectives on an activity often overlooked in scientific research. Key revelations include the role of body curvature and slope in maintaining the hoop’s motion.

Study Details Dynamics of Hula Hooping

According to research published in the Proceedings of the National Academy of Sciences, experiments were conducted using miniature robotic models at New York University’s Applied Mathematics Laboratory. Different shapes, such as cylinders, cones, and hourglasses, were replicated at one-tenth human scale to examine their impact on hula hooping efficiency. Motorised motions were applied to these models, and high-speed cameras captured the behaviour of hoops launched onto the robotic forms.

Findings indicated that successful twirling could be achieved without significant variation based on body cross-section shapes, such as circles or ellipses. However, maintaining the hoop’s height against gravity required specific physical attributes, particularly sloping hips and a curvy waist. These characteristics provided the necessary angles for upward thrust and stability, helping to keep the hoop in motion.

Mathematical Modelling and Broader Applications

Senior researcher and associate professor Leif Ristroph explained in a press release that mathematical models were developed to explain the physical principles observed. These models offered insight into the interaction between body motion and hoop dynamics, which could be extended to applications such as energy harvesting and robotics.

The researchers highlighted that the work bridges a gap in the understanding of a popular activity, while also demonstrating its relevance to technology. Ristroph noted that these findings could lead to improvements in robotic systems used in manufacturing, as well as innovative ways to utilise energy generated by vibrations.

This research sheds light on the science behind hula hooping, offering practical applications while enhancing the understanding of human and mechanical motion.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending