Connect with us

Published

on

Could a mountain grow to greater heights than Everest? (Image credit: sansubba)

Sixty million years ago, when the Eurasian plate slammed into the Indian plate, a mountain range was born. Because these plates were of similar density, neither could sink below the other. The rocks had nowhere to go but up.

Now, the Himalayas host Earth’s tallest mountains. Mount Everest is the tallest, towering 5.4 miles (8.8 kilometers) above sea level. After Everest, the tallest is K2, which rises 5.3 miles (8.6 km) above Earth’s surface. 

Could these mountains be any higher? For that matter, how high could any mountain grow on Earth?

Theoretically, a mountain could be “quite a bit taller than Everest,” Gene Humphreys (opens in new tab) , a geophysicist at the University of Oregon, told Live Science. But first it would have to overcome a few challenges that many mountains face as they grow.

For instance, because of Earth’s gravitational pull, any pile of rock that grows into a mountain will start to slouch, “much like a wad of bread dough will slowly flatten when placed on a table,” Humphreys said.

Related: Is Mount Everest really the tallest mountain on Earth?

Active processes, like erosion, also help keep mountains from growing too tall. Glaciers, vast blocks of slowly moving ice, are especially good at carving up mountains.

The peak of Mount Everest sites above the clouds of Tibet. (Image credit: Nicole Kucera)

Earth scientists refer to glacial erosion as “the glacial buzzsaw because they are so effective at taking the sides off of mountains,” Humphreys said. “[Glacial erosion] creates a steep-sided mountain that is then prone to landsliding.”

The effects of erosion and gravity mean that “the bigger the mountain, the greater the stresses created by gravity and the stronger the tendency to collapse,” Humphreys said. And although Mount Everest “could conceivably get elevated yet higher, its steep south side seems unstable,” which might lead to landslides.

However, there are ways a mountain could grow taller than Everest, Humphreys continued. Possibly even 1 mile (1.6 km) taller — but only if the conditions were just right. First, it’d have to be formed from volcanic processes rather than from continental collision. Volcanic mountains, like the Hawaiian Islands, grow as they erupt. Lava flowing out of the volcanoes cools in layers, building the volcanoes higher and higher. And finally, for the mountain to keep growing, it would need a continuing source of magma pumped higher and higher, allowing it to erupt, flow down the mountain’s sides, and cool. 

This volcanic process is exactly how the solar system’s tallest mountain, Mars’ Olympus Mons, formed. Towering 16 miles (25 km), Olympus Mons is so tall that it actually pokes through the top of the Red Planet’s atmosphere, Briony Horgan (opens in new tab) , a planetary scientist at Purdue University in Indiana, told Live Science.Related Mysteries—Which country has the most islands?

—What’s the tallest wave ever recorded on Earth?

—What’s the oldest mountain range in the world? (How about the youngest?)

Olympus Mons could get so tall because Mars lacks plate tectonics, the large rafts of crust that dominate Earth’s geological processes. Olympus Mons formed over a hotspot — a deep well of rising magma — that repeatedly erupted. Just like the Hawaiian Islands, that erupted lava would flow down the sides of the mountain and cool into a new layer of rock.

However, even though the Hawaiian Islands also formed over a hotspot, the Pacific plate keeps moving, so the islands won’t stay over the hotspot long enough for their volcanoes to become as large as a mountain like Olympus Mons.

“On Mars if you just have that same hotspot but the plate isn’t moving, you can make enormous, enormous volcanoes over the course of hundreds of millions or billions of years of activity,” Horgan said.

But even giants like Olympus Mons have a limit. According to Horgan, if the volcano is still active (so far, we haven’t observed any current activity), it’s likely nearing the end of its growth. This is because the pressure required to continue to pump magma to the top of the mountain might soon be unable to overcome the forces working against it — the height of the mountain and Mars’ own gravitational pull. 

“You can think of a volcano basically as a pipe that you’re trying to pump lava through, and on some level, if it’s too big, too high, you don’t have enough power to get the lava through,” Horgan said.

Continue Reading

Politics

Rachel Reeves turning around UK’s finances ‘like Steve Jobs did for Apple’, claims minister

Published

on

By

Rachel Reeves turning around UK's finances 'like Steve Jobs did for Apple', claims minister

Rachel Reeves will turn around the economy the way Steve Jobs turned around Apple, a cabinet minister has suggested ahead of the upcoming spending review.

Science and Technology Secretary Peter Kyle compared the chancellor to the late Apple co-founder when asked on Sky News’ Sunday Morning with Trevor Phillips where the £86bn for his department is coming from.

Politics Live: Winter fuel payment cut to be dealt with ‘in run up to autumn’

Steve Jobs. Pic: Reuters
Image:
Apple Inc. chief executive Steve Jobs, who died in 2011. Pic: Reuters

Rachel Reeves
Image:
Chancellor Rachel Reeves


The package, confirmed ahead of the full spending review next week, will see each region in England granted £500m to spend on science projects of their choice, including research into faster drug treatments.

Asked by Trevor Phillips how the government is finding the money, Mr Kyle said: “Rachel raised money in taxes in the autumn, we are now allocating it per department.

“But the key thing is we are going to be investing record amounts of money into the innovations of the future.

“Just bear in mind that how Apple turned itself around when Steve Jobs came back to Apple, they were 90 days from insolvency. That’s the kind of situation that we had when we came into office.

“Steve Jobs turned it around by inventing the iMac, moving to a series of products like the iPod.

“Now we are starting to invest in the vaccine processes of the future, some of the high-tech solutions that are going to be high growth. We’re investing in our space sector… they will create jobs in the future.”

👉 Click here to listen to Electoral Dysfunction on your podcast app 👈

The spending review is a process used by governments to set departmental budgets for the years ahead.

Asked if it will include more detail on who will receive winter fuel payments, Mr Kyle said that issue will be “dealt with in the run-up to the autumn”.

“This is a spending review that’s going to set the overall spending constraints for government for the next period, the next three years, so you’re sort of talking about two separate issues at the moment,” he said.

Please use Chrome browser for a more accessible video player

‘So we won’t get an answer on winter fuel this week?

Scrapping universal winter fuel payments was one of the first things Labour did in government – despite it not being in their manifesto – with minsters saying it was necessary because of the financial “blackhole” left behind by the Tories.

But following a long-drawn out backlash, Sir Keir Starmer said last month that the government would extend eligibility, which is now limited to those on pension credit.

Read more: Spending review 2025 look ahead

It is not clear what the new criteria will be, though Ms Reeves has said the changes will come into place before this winter.

Mr Kyle also claimed the spending review will see the government invest “the most we’ve ever spent per pupil in our school system”.

However, he said the chancellor will stick to her self-imposed fiscal rules – which rule out borrowing for day-to-day spending – meaning that while some departments will get extra money, others are likely to face cuts.

Continue Reading

Science

Scientists Discover Heaviest Proton-Emitting Nucleus After Nearly 30 Years

Published

on

By

Scientists Discover Heaviest Proton-Emitting Nucleus After Nearly 30 Years

Nuclear physicists have detected the radioactive disintegration of a rare isotope of astatine for the first time. This shows that the heaviest element found in nature may be modified a lot, maybe even destroyed, in a way that scientists didn’t predict. That oddball radioactive decay with 85 protons and 103 neutrons is almost (but not quite) a nuclear species that we would call stable. The finding was made by researchers at the University of Jyväskylä in Finland, and it’s a major development for nuclear physics. It describes something that just shouldn’t be and then shows us what the forces are that make for heavy atomic structures.

Rare Proton Decay in 188At Sheds Light on Extreme Nuclear Shapes and Stability Limits

As per a report published in Nature Communications on May 29, 2025, the isotope was produced using a fusion-evaporation reaction that entailed the irradiation of a natural silver target with strontium-84 ions. The exotic nucleus, 188 At, has a pronouncedly prolate form (of a ”watermelon” type) generated by the neutron and proton normal and attractive interaction in the inner shells of heavy nuclei experienced as a projectile in our case study.

Henna Kokkonen, the doctoral researcher who made the discovery, has mentioned that the proton emitted allows an unstable nucleus to progress towards stability by getting rid of a proton. The 190 At isotope was found by Kokkonen with the investigation of rare decay in the heavy nucleus, the rare interaction in the binding energy of the proton, and presumably a tendency change in the heavy atom region.

The team of the theory and experiment workshop pointed out the importance of exploring new decay modes and testing predictive models at the extremes of the periodic table. They also talked about how technology has improved in making and studying isotopes with short lifetimes.

Isotope discoveries of this scale remain rare in modern nuclear physics. Kokkonen expressed pride in contributing to a global effort that deepens our understanding of atomic structure. Each such finding helps refine our knowledge of nuclear forces, elemental formation, and the fundamental limits of matter. The breakthrough underscores how even after a century of nuclear science, the field continues to yield surprises from the smallest building blocks of the universe.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Google DeepMind’s Demis Hassabis Wants to Build AI Email Assistant That Can Reply in Your Style: Report



Mistral Code AI-Powered Coding Assistant Introduced for Enterprise Developers

Continue Reading

Science

Hubble Unveils Galactic ‘Cotton Candy’ in the Large Magellanic Cloud

Published

on

By

Hubble Unveils Galactic ‘Cotton Candy’ in the Large Magellanic Cloud

Hubble’s latest view reveals a jewel-like cloudscape of gas and dust in the Large Magellanic Cloud (LMC), a dwarf galaxy about 160,000 light-years from Earth. This Milky Way companion is our galaxy’s largest satellite, and its active stellar nurseries glow in intricate pastel filaments. The wispy tendrils in the image have been likened to brightly colored “cotton candy” because of their pink, blue and green hues. Astronomers use scenes like this to probe star formation and dust. By tracing where dust hides newborn stars, Hubble’s sharp view reveals the structure of stellar nurseries in this nearby galaxy.

Galactic Cotton Candy: Nebula and Stars

According to NASA’s official site, this rich nebula was imaged with Hubble’s Wide Field Camera 3 (WFC3) using five different filters, including ultraviolet and infrared bands. Each filter isolates a range of wavelengths, so the composite image highlights different components of the cloud. Bright regions mark hot young stars lighting up gas, while darker filaments are cooler dust clouds blocking light.

In effect, the image maps the interplay of stars and gas: astronomers see how massive stars sculpt the nebula, triggering new generations of star birth in the gas and dust. The vivid patterns of emission and absorption trace the LMC’s galactic structure, helping researchers study how its interstellar medium fuels star formation.

Beyond the Visible: Filters and False Color

Hubble’s technicians assigned colors to the filtered data to make the invisible visible. Visible-light filters use their natural hues, while ultraviolet light is shown as blue/violet and infrared as red. In this five-filter image, for example, ultraviolet-dominated spots and infrared-bright regions are translated into shades of blue, purple and red. This color scheme “closely represents reality while adding new information” from parts of the spectrum our eyes cannot see. In practice, it means the image remains scientifically faithful but emphasizes features that humans would otherwise miss.

The final result is both a tool and a portrait: astronomers gain insight into the composition and temperature of the gas and dust (for example, hydrogen-rich regions glowing pink), while the public enjoys a stunning, otherworldly view of a neighboring galaxy.

Continue Reading

Trending