Connect with us

Published

on

SpaceX has rescheduled for Thursday the first test flight of Starship, the most powerful rocket ever built, designed to send astronauts to the Moon, Mars and beyond, after a technical glitch forced a halt to the countdown.

A planned liftoff Monday of the gigantic rocket was called off less than 10 minutes ahead of the scheduled launch because of a pressurization issue in the first-stage booster, SpaceX said.

The private space company continued with the countdown in what it called a “wet dress rehearsal,” stopping the clock with 10 seconds to go, just before the massive engines on the booster were to have been ignited.

SpaceX founder Elon Musk said a frozen pressure valve forced a scrub of the launch, which had been planned for 8:20 am Central Time (13:20 GMT) from Starbase, the SpaceX spaceport in Boca Chica, Texas.

“Learned a lot today, now offloading propellant, retrying in a few day,” Musk tweeted.

Before announcing Thursday as the new target for liftoff, SpaceX had said the inaugural flight would be delayed for at least 48 hours to recycle the liquid methane and liquid oxygen that fuels the rocket.

The new launch window opens Thursday at 8:28am Central Time (13:28 GMT) and lasts 62 minutes, SpaceX said on Twitter.

The US space agency NASA has picked the Starship spacecraft to ferry astronauts to the Moon in late 2025 — a mission known as Artemis III — for the first time since the Apollo program ended in 1972.

Starship consists of a 164-foot (50-meter) tall spacecraft designed to carry crew and cargo that sits atop a 230-foot tall first-stage Super Heavy booster rocket.

SpaceX conducted a successful test-firing of the 33 Raptor engines on the first-stage booster in February but the Starship spacecraft and the Super Heavy rocket have never flown together.

The integrated test flight is intended to assess their performance in combination.

Musk had warned ahead of the launch that a delay was likely.

“It’s a very risky flight,” he said earlier. “It’s the first launch of a very complicated, gigantic rocket.

“There’s a million ways this rocket could fail,” Musk said. “We’re going to be very careful and if we see anything that gives us concern, we’ll postpone.”

Multi-planet species

NASA will take astronauts to lunar orbit itself in November 2024 using its own heavy rocket called the Space Launch System (SLS), which has been in development for more than a decade.

Starship is both bigger and more powerful than SLS and capable of lifting a payload of more than 100 metric tonnes into orbit.

It generates 17 million pounds of thrust, more than twice that of the Saturn V rockets used to send Apollo astronauts to the Moon.

The plan for the integrated test flight is for the Super Heavy booster to separate from Starship about three minutes after launch and splash down in the Gulf of Mexico.

Starship, which has six engines of its own, will continue to an altitude of nearly 150 miles, completing a near-circle of the Earth before splashing down in the Pacific Ocean about 90 minutes after launch.

“If it gets to orbit, that’s a massive success,” Musk said.

“If we get far enough away from the launchpad before something goes wrong then I think I would consider that to be a success,” he said. “Just don’t blow up the launchpad.”

SpaceX foresees eventually putting a Starship into orbit, and then refueling it with another Starship so it can continue on a journey to Mars or beyond.

Musk said the goal is to make Starship reusable and bring down the price to a few million dollars per flight.

“In the long run — long run meaning, I don’t know, two or three years — we should achieve full and rapid reusability,” he said.

The eventual objective is to establish bases on the Moon and Mars and put humans on the “path to being a multi-planet civilization,” Musk said.

“We are at this brief moment in civilization where it is possible to become a multi-planet species,” he said. “That’s our goal. I think we’ve got a chance.”


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

A Nearby Supernova May End Dark Matter Search, Claims New Study

Published

on

By

A Nearby Supernova May End Dark Matter Search, Claims New Study

The pursuit of understanding dark matter, which comprises 85 percent of the universe’s mass, could take a significant leap forward with a nearby supernova. Researchers at the University of California, Berkeley, led by Associate Professor of Physics Benjamin Safdi, have theorised that the elusive particle known as the axion might be detected within moments of gamma rays being emitted from such an event. Axions, predicted to emerge during the collapse of a massive star’s core into a neutron star, could transform into gamma rays in the presence of intense magnetic fields, offering a potential breakthrough in physics.

Potential Role of Gamma-Ray Telescopes

The study was published in Physical Review Letters and revealed that the gamma rays produced from axions could confirm the particle’s mass and properties if detected. The Fermi Gamma-ray Space Telescope, currently the only gamma-ray observatory in orbit, would need to be pointed directly at the supernova, with the likelihood of this alignment estimated at only 10 percent. A detection would revolutionise dark matter research, while the absence of gamma rays would constrain the range of axion masses, rendering many existing dark matter experiments redundant.

Challenges in Catching the Event

For detection, the supernova must occur within the Milky Way or its satellite galaxies—an event averaging once every few decades. The last such occurrence, supernova 1987A, lacked sensitive enough gamma-ray equipment. Safdi emphasised the need for preparedness, proposing a constellation of satellites, named GALAXIS, to ensure 24/7 sky coverage.

Axion’s Theoretical Importance

The axion, supported by theories like quantum chromodynamics (QCD) and string theory, bridges gaps in physics, potentially linking gravity with quantum mechanics. Unlike neutrinos, axions could convert into photons in strong magnetic fields, providing unique signals. Laboratory experiments like ABRACADABRA and ALPHA are also probing for axions, but their sensitivity is limited compared to the scenario of a nearby supernova. Safdi expressed urgency, noting that missing such an event could delay axion detection by decades, underscoring the high stakes of this astrophysical endeavour.

Continue Reading

Science

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Published

on

By

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Intelligent extraterrestrial civilisations might be utilising stars as massive interstellar vehicles to explore the galaxy, according to a theory proposed by Clement Vidal, a philosopher at Vrije Universiteit Brussel in Belgium. His research suggests that alien species could potentially accelerate their binary star systems to traverse vast cosmic distances. While such a concept is purely hypothetical and unproven, Vidal’s recent paper, which has not undergone peer review, raises intriguing possibilities about advanced extraterrestrial engineering.

Concept of Moving Star Systems

The study was published in the Journal of the British Interplanetary Society. As per a report by LiveScience, the idea revolves around the notion that alien civilisations, instead of building spacecraft for interstellar travel, might manipulate entire star systems to travel across the galaxy. Vidal highlights binary star systems, particularly those involving neutron stars and smaller companion stars, as ideal candidates. Neutron stars, due to their immense gravitational energy, could serve as anchors for devices designed to propel the system by selectively ejecting stellar material.

Vidal explained in the paper that uneven heating or manipulation of magnetic fields on a star’s surface could cause it to eject material in one direction. This process would create a reactionary thrust, propelling the binary system in the opposite direction. The concept provides a way to travel while preserving planetary ecosystems, making it a theoretically viable method for species reliant on their home systems.

Known Examples with High Velocities

Astronomers have identified hypervelocity stars, such as the pulsars PSR J0610-2100 and PSR J2043+1711, which exhibit high accelerations. While their movements are believed to be natural phenomena, Vidal suggests they could be worth further investigation to rule out potential artificial influences.

This theory adds an unconventional angle to the search for intelligent life, expanding possibilities beyond traditional methods of exploration like searching for signals or probes. The research underscores the importance of considering advanced and unconventional methods aliens might employ to navigate the galaxy.

Continue Reading

Science

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

Published

on

By

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

NASA’s Hubble Space Telescope has provided new insights into the young star FU Orionis, located in the constellation Orion. Observations have uncovered extreme temperatures in the inner region of its accretion disk, challenging current models of stellar accretion. Using Hubble’s Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph, astronomers captured far-ultraviolet and near-ultraviolet spectra, revealing the disk’s inner edge to be unexpectedly hot, with temperatures reaching 16,000 kelvins—almost three times the Sun’s surface temperature.

A Star’s Bright Outburst Explained

First observed in 1936, FU Orionis became a hundred times brighter in months and has remained a unique object of study. Unlike typical T Tauri stars, its accretion disk touches the stellar surface due to instabilities. These are caused by the disk’s large mass, interactions with companion stars, or material falling inwards. Lynne Hillenbrand, a co-author from Caltech, in a statement said that the ultraviolet brightness seen exceeded predictions, revealing a highly dynamic interface between the star and its disk.

Implications for Planet Formation

As per a report by NASA, the study holds significant implications for planetary systems forming around such stars. The report further quoted Adolfo Carvalho, lead author of the study, saying that while distant planets in the disk may experience altered chemical compositions due to outbursts, planets forming close to the star could face disruption or destruction. This revised model provides critical insights into the survival of rocky planets in young star systems, he further added.

Future Investigations on FU Orionis

The research team continues to examine spectral emission lines in the collected data, aiming to map gas movement in the star’s inner regions. Hillenbrand noted that FU Orionis offers a unique opportunity to study the mechanisms at play in eruptive young stars. These findings, published in The Astrophysical Journal Letters, showcase the ongoing value of Hubble’s ultraviolet capabilities in advancing stellar science.

Continue Reading

Trending