Connect with us

Published

on

SpaceX is to make a second attempt on Thursday to carry out the first test flight of Starship, the most powerful rocket ever built, designed to send astronauts to the Moon, Mars and beyond.

A planned liftoff Monday of the gigantic rocket was aborted less than 10 minutes ahead of the scheduled launch because of a pressurization issue in the first-stage booster.

The new window for liftoff from Starbase, the SpaceX spaceport in Boca Chica, Texas, opens on Thursday at 8:28 am Central Time (1328 GMT) and lasts for about an hour, SpaceX said.

SpaceX founder Elon Musk, who has sought to play down expectations for the risk-laden inaugural test flight, cast some doubt on whether the launch will actually go ahead on Thursday.

“The team is working around the clock on many issues,” Musk tweeted late Tuesday. “Maybe 4/20, maybe not.”

The US space agency NASA has picked the Starship spacecraft to ferry astronauts to the Moon in late 2025 — a mission known as Artemis III — for the first time since the Apollo program ended in 1972.

Starship consists of a 164-foot (50-meter) tall spacecraft designed to carry crew and cargo that sits atop a 230-foot tall first-stage Super Heavy booster rocket.

SpaceX conducted a successful test-firing of the 33 massive Raptor engines on the first-stage booster in February but the Starship spacecraft and the Super Heavy rocket have never flown together.

The integrated test flight is intended to assess their performance in combination.

Monday’s launch was scrubbed because of a frozen pressure valve on the Super Heavy booster and SpaceX needed to delay another try for 48 hours to recycle the liquid methane and liquid oxygen that fuels the rocket.

Musk had warned ahead of the launch that delays and technical issues were likely.

“It’s a very risky flight,” he said. “It’s the first launch of a very complicated, gigantic rocket.

“There’s a million ways this rocket could fail,” Musk said. “We’re going to be very careful and if we see anything that gives us concern, we’ll postpone.”

Multi-planet species

NASA will take astronauts to lunar orbit itself in November 2024 using its own heavy rocket called the Space Launch System (SLS), which has been in development for more than a decade.

Starship is both bigger and more powerful than SLS and capable of lifting a payload of more than 100 metric tonnes into orbit.

It generates 17 million pounds of thrust, more than twice that of the Saturn V rockets used to send Apollo astronauts to the Moon.

The plan for the integrated test flight is for the Super Heavy booster to separate from Starship about three minutes after launch and splash down in the Gulf of Mexico.

Starship, which has six engines of its own, will continue to an altitude of nearly 150 miles, completing a near-circle of the Earth before splashing down in the Pacific Ocean near Hawaii about 90 minutes after launch.

“If it gets to orbit, that’s a massive success,” Musk said.

“If we get far enough away from the launchpad before something goes wrong then I think I would consider that to be a success,” he said. “Just don’t blow up the launchpad.”

SpaceX foresees eventually putting a Starship into orbit, and then refueling it with another Starship so it can continue on a journey to Mars or beyond.

Musk said the goal is to make Starship reusable and bring down the price to a few million dollars per flight.

“In the long run — long run meaning, I don’t know, two or three years — we should achieve full and rapid reusability,” he said.

The eventual objective is to establish bases on the Moon and Mars and put humans on the “path to being a multi-planet civilization,” Musk said.

“We are at this brief moment in civilization where it is possible to become a multi-planet species,” he said. “That’s our goal. I think we’ve got a chance.”


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

ISRO Postpones Docking of SpaDeX Satellites Again

Published

on

By

ISRO Postpones Docking of SpaDeX Satellites Again

The Indian Space Research Organisation (ISRO) has postponed its Space Docking Experiment (SpaDex) mission which was scheduled for Thursday, after the satellites drifted more than expected during a manoeuvre, ISRO said in a statement on Wednesday.

This is the second time that the docking experiment has been postponed.
It was originally scheduled for January 7.

In a post on X, ISRO said, “While making a maneuver to reach 225 m between satellites, the drift was found to be more than expected post non-visibility period.”

“The planned docking for tomorrow is postponed. Satellites are safe,” it added.

Earlier, on Monday, the ISRO had postponed the docking of its SpaDex mission program, initially scheduled for January 7, 2025. The new date for the docking has been set for January 9, 2025. ISRO has not provided any specific reason for the schedule change.

On December 30, ISRO achieved a historic feat by launching PSLV-C60 with SpaDeX and innovative payloads.

The SpaDeX mission is a cost-effective technology demonstrator mission for the demonstration of in-space docking using two small spacecraft launched by PSLV. The primary objective of the SpaDeX mission is to develop and demonstrate the technology needed for the rendezvous, docking, and undocking of two small spacecraft (SDX01, which is the Chaser, and SDX02, the Target, nominally) in a low-Earth circular orbit.

Union Minister of State (Independent Charge) of the Ministry of Earth Sciences, Jitendra Singh, last week said that the SpaDeX mission was named “Bharatiya Docking Technology” because it is purely an indigenous mission, and India is carrying out the first such experiment related to docking technology.

The Union MoS further stated that SpaDeX’s mission very much aligns with Prime Minister Narendra Modi’s vision of “Aatmanirbhar Bharat.”

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

Published

on

By

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

The highly anticipated debut launch of Blue Origin’s New Glenn rocket has been scheduled for January 10, 2025. The heavy-lift rocket, designed for both commercial and government missions, will take off from Florida’s Cape Canaveral Space Force Station. A launch window of three hours, beginning at 1 a.m. EST, has been announced. The rocket’s inaugural flight marks a significant milestone for Blue Origin as the company aims to validate its capabilities and establish itself as a major player in the space industry.

New Glenn’s Mission and Capabilities

According to Blue Origin, as reported by space.com, the New Glenn rocket is a reusable, 320-foot-tall launch vehicle capable of carrying 50 tons (45 metric tons) to low Earth orbit (LEO). The NG-1 mission will test the company’s Blue Ring spacecraft platform, which is designed to support a variety of orbital payloads. This demonstration will include assessments of communication systems, in-space telemetry, and ground-based tracking capabilities. The payload will remain aboard the rocket’s second stage for a six-hour mission, as stated by Blue Origin.

Booster Recovery and Future Goals

The mission will also attempt a recovery of the rocket’s first stage booster, which will land on a ship stationed in the Atlantic Ocean, as per reports from space.com. The company’s senior vice president, Jarrett Jones, emphasised the importance of the flight, stating that rigorous preparations had been undertaken but that true insights could only be gained through actual launch experiences.

NG-1 is a critical step toward securing certification for U.S. national security missions. A successful outcome would bring Blue Origin closer to fulfilling these high-stakes contracts, further solidifying its position in the competitive aerospace sector.

This launch will serve as a proving ground for the New Glenn system, with valuable data expected to inform future missions and technology advancements.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Spiders Detect Smells Through Leg Hairs, Claims New Study

Published

on

By

Spiders Detect Smells Through Leg Hairs, Claims New Study

New research has revealed that spiders use specialised hairs on their legs to detect airborne scents, offering fresh insights into the sensory abilities of these arachnids. This discovery has resolved a long-standing question about how spiders, which lack antennae like insects, can identify odours such as pheromones. Male spiders were observed using olfactory hairs, known as wall-pore sensilla, to sense sex pheromones emitted by females. This mechanism underscores their ability to locate potential mates through chemical signals.

Olfactory Sensilla Identified

According to a study, published in the Proceedings of the National Academy of Sciences, the wall-pore sensilla were found on the upper legs of adult male wasp spiders (Argiope bruennichi). These microscopic structures are believed to be critical for detecting pheromones. High-resolution scanning electron microscopy revealed thousands of these sensilla, which were absent in females and juvenile males. This specific distribution supports their role in mate detection. Researchers emphasised to phys.org that these findings have mapped and identified the elusive sensilla, previously thought to be absent in spiders.

Response to Pheromones

Experiments demonstrated the sensitivity of these sensilla to pheromone compounds. Tiny amounts of the substance, such as 20 nanograms, elicited significant neuronal responses. The experiments involved exposing the sensilla to pheromone puffs, and responses were observed consistently across various leg pairs. The researchers concluded that spiders’ olfactory systems rival the sensitivity seen in insects, highlighting their advanced chemical detection capabilities.

Broader Implications

The study explored 19 other spider species and confirmed the presence of wall-pore sensilla in most male spiders, suggesting that this trait evolved multiple times. However, it was noted that some primitive species lack these structures. Future research is expected to investigate how female spiders detect smells, the types of chemicals relevant to their behaviours, and the evolutionary aspects of olfaction in spiders.

This breakthrough provides a foundation for understanding the sophisticated sensory mechanisms that govern spider behaviour.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending