Chile’s president, Gabriel Boric, wants to create a plan to require state involvement in and control of any lithium contracts going forward, in the country with the world’s largest lithium supply.
Boric says that the plan will protect biodiversity and indigenous rights, and will help to distribute the gains from Chile’s mineral wealth more broadly among Chileans.
Chile is home to the world’s largest lithium reserves in its vast northern Atacama desert. The desert is known for its salt flats, large flat areas where water has evaporated and left concentrated solids on the land. Lithium can then be extracted from brine pools on these salt flats.
The desert also reaches into neighboring Bolivia and Argentina, and the area has been referred to as the “lithium triangle.” It is thought to hold roughly half of the world’s lithium reserves, though the resource is still reasonably common elsewhere.
Currently, the world’s largest lithium exporting country is Australia, with Chile in second place. But other countries including China, Argentina, Brazil, and even the US have significant lithium reserves and production capacity, and everyone is aiming to increase production in the coming years.
And some other countries have exerted control over their EV battery resources, with Mexico recently nationalizing its lithium deposits and Indonesia banning exports of nickel in hope of keeping that industry domestic.
Lithium prices have been volatile in recent years, with the resource shooting up about 400% in price in late 2021 due to supply chain challenges and extremely high electric car demand which supply was not able to keep up with.
But most expected prices to drop precipitously this year, and since the beginning of the year, they have. Prices are still high compared to historical averages but are dropping quickly and getting close to those averages.
And, despite being in the name of lithium-ion batteries, each electric car only needs about 20 lbs of lithium. At recent prices, this means there is a few hundred dollars worth of lithium in each EV battery.
Boric’s plan would affect the world’s largest two lithium suppliers, Albemarle and Sociedad Quimica y Minera de Chile (SQM), both of which operate in Chile. Albemarle is a multinational which was formed in 1992 as a spin-off of Ethyl Corporation, the company responsible for putting lead in gasoline. SQM was originally founded as a Chilean state-owned company in 1968 but is now owned by Chilean billionaire Julio Ponce Lerou, son-in-law of Chilean dictator Augusto Pinochet.
The companies dipped 21% and 10% in the stock market today after Boric’s plan was announced.
Chile would not instantly take control of these companies’ operations, but rather the plan would go into effect upon renewal of the companies’ contracts. Currently, SQM’s contract will expire in 2030, and Albemarle’s in 2043. Boric hoped that companies would be open to earlier participation by the state.
But so far, this plan has only been announced by Boric and will have to go through Chile’s National Congress first. He plans to present it to Congress later this year, though the body has blocked many of his proposals in the past.
Chilean politics is going through a lot of change right now. The country saw sustained protests starting in 2019 demanding a new constitution to replace the current one which was implemented under dictator Augusto Pinochet in 1980.
Then in 2021, Boric, a socialist who at 37 is one of the world’s youngest state leaders, won a wide victory over far-right opponent Jose Antonio Kast, who had previously served under Pinochet and whose grandfather had been in the Nazi army. So, the choice was stark.
With this mandate, Boric proposed a new constitution with many progressive reforms. One of those proposed reforms (article 27) would have been to nationalize mining operations, but it was rejected before the constitution went to a vote. Instead, it included a provision that miners must put aside resources to repair damage from mining activities.
The proposed constitution was supported by most Chileans at first, particularly young Chileans and those on the political left. But as the referendum for its approval came closer, polls turned against it and the proposed Constitution failed by a wide margin. The country is now drafting a second proposal, as most Chileans still want to replace the constitution of Pinochet.
But this would not be Chile’s first brush with the nationalization of the extractive industry. In the late 60s and early 70s, Chile pushed to nationalize several industries, particularly the extraction of copper (and even created an early “internet” to manage it).
Chilean president Salvador Allende, a socialist, won in 1970 with the promise of nationalizing copper outright without compensation to the various companies, largely US-based, currently operating in the sphere. The copper industry was nationalized soon after his election with modest compensation to these companies, which drew the ire of the U.S.
Then, in 1973, a U.S.-backed coup led to the deposal and death of democratically-elected Allende and his replacement with the new dictator Pinochet.
Boric’s announcement stops short of Allende’s, in that it does not aim to immediately nationalize the industry without compensation. It also stops short of the proposal in article 27, as that would have given the state exclusive mining rights across many resources, whereas Boric’s current proposal seeks to enforce public-private partnerships in lithium specifically.
But the Chilean state still owns the nation’s copper extraction industry via Codelco, which supplies 11% of the world’s copper. Boric would have this company take a role in finding the best way to manage any public-private partnerships for lithium extraction.
The US currently has a free trade agreement with Chile, in force since 2004. This is relevant for new battery critical mineral guidelines from the US, requiring that battery minerals be sourced from the US or free trade countries in order to qualify for tax credits from the Inflation Reduction Act.
FTC: We use income earning auto affiliate links.More.
Guys, I think JackRabbit has a two-person e-bike coming, errr… electric scooter? I’m not really sure what you call this thing, but it looks wild.
I recently took a short break from riding and writing e-bikes all day to doomscroll social media, which basically just feeds me more bike content all day. And what popped up in my feed other than this peculiar thing?
Sure, it’s obscured by a surfboard mount, but there’s no getting around the fact that it looks like this shiny new silver JackRabbit isn’t quite as mini as we’re used to from the famously “micro and proud” micro e-bike maker. And there’s one other detail that’s also apparent if you look closely.
It’s a two-seater.
Advertisement – scroll for more content
I think this video was meant to be something of a teaser from JackRabbit, but it might as well be a near-unveiling.
In other parts of the same teaser video, almost the entire bike is visible. From those other shots, we can see that it’s still not quite an e-bike in the traditional “comes with pedals” sense.
Instead, JackRabbit’s somehow simultaneously chunky yet tiny folding footpegs are still visible. The wide handlebars also appear to have JackRabbit’s unique 90º turning handlebar lock, which allows the bars to spin sideways when parked. You can even see it in use in the images below.
On JackRabbit’s smaller models, that trick makes the entire bike just 7″ (17 cm) wide, making it easy to store behind a couch or under a dorm bed. Here, it’s unclear if it will be quite as narrow, but it should still make this a conveniently stowable ride.
It’s hard to tell, but it looks like the wheels might be larger than JackRabbit’s standard 20″ size, helping give it the “full-sized bike” qualifier that JackRabbit claims in the teaser video. The perspective is confusing, as the front wheel looks closer to 24″ or 26″, yet the rear wheel still disappears behind that surfboard. Could this be the first mullet JackRabbit? (Not to be confused with a JackRabbit mullet, which is a hairstyle that would pair well with what is likely the most free-spirited of all the e-bike brands out there.)
There may also be different saddle options, since we can clearly see what looks to be a conventional bicycle saddle in some images and a longer, stretched-out, banana seat-style saddle in the other shots.
We can also see two of JackRabbit’s “Rangebuster” batteries in the frame, a larger capacity pack developed by the company with a claimed 24 miles (39 km) range per battery, meaning this model might have a range of nearly 50 miles (80 km).
But there’s a lot we still don’t know. Will it get the powerfully torquey motor from the JackRabbit XG Pro? Will there be a pedal option? Will my wife agree to ride this thing with me? These are yet questions without answers, people.
One thing is for sure, though. JackRabbit says all will be revealed soon. “Everything you know about JackRabbit is changing on 8/12,” writes the company. (That’s next week, for any Europeans in the room.)
I don’t know about you, but I’m suddenly very much looking forward to Tuesday.
Electrek’s Take
I don’t know what to make of this, but I’m excited. I’ve been a JackRabbit fan since before the OG was even the OG. It’s just such a fun and free-spirited brand.
If the e-bike market was high school, JackRabbit would be that quirky, non-conformist kid that everyone kind of wondered about but who was obviously having more fun than anyone else. It’s the e-bike that just puts its hands over its ears and goes “La la la la…” when you try to tell ’em that it’s not actually an e-bike.
It’s weird. It’s wild. But it works. And being a JackRabbit fan is a hill I’m prepared to die on – though admittedly, you’d be well advised to tackle that hill on one of the Pro models instead of the OG2 for the extra power and torque.
My wife might give me a funny look every time I whip out my JackRabbit, but I still love riding it. And so it’s with that level of excitement and curiosity that I wonder what the brand that refuses to be defined is up to with this new “full-sized bike” reveal they’ve got coming. The ability to carry two riders sounds great, especially since the thing still looks so small and portable.
Of course, the over-priced elephant in the room is that JackRabbit’s Achilles heel is its pricing. These things aren’t cheap. The entry-level OG2 model only starts at $1,249, and the flagship XG Pro is almost double that. Granted, it’s an awesome bike, and one that I was able to use to tow a kayak down the road for miles, then put on top of that kayak and paddle through the Gulf of Mexico for miles (something of which I don’t know of any other e-bike that can do). But that makes me wonder what yet a bigger and presumably more impressive JackRabbit will cost.
But hey, I’m so here for this!
If you want to see the full teaser video, check it out below.
FTC: We use income earning auto affiliate links.More.
Small package, big impact: that’s the story behind Maxon’s new Air S mid‑drive motor. On the surface, it looks almost identical to the original Air: sleek, nearly invisible, and designed to disappear into your bike’s frame. But beneath this minimalist exterior is a dramatic leap in capability.
Now the torque has nearly tripled, soaring to 90 Nm, all while keeping total system weight to just 3.8 kg, (8.4 lb) including the motor and 400 Wh battery.
Just 100 g (0.22 lb) heavier than the original Air yet tripling the performance, the Air S delivers up to 90 Nm of torque and 620 W of peak power, catapulting it into the realm of powerful mid‑drive motors built for demanding trail performance. That’s the same torque you’d expect from some of the strongest mid‑drive motors in modern electric mountain biking, yet in a package that’s still feather‑light.
Advertisement – scroll for more content
Why it matters for lightweight e-bikes
As New Atlas recently pointed out, these motors are enabling super lightweight builds that previously weren’t possible: Bikes using the Air S, like the Thömus Lightrider E‑Max or Instinctiv’s Ocelot, tip the scales at barely 15 kg (33 lb), far lighter than typical full-suspension e‑MTBs, thanks largely to the slender motor and integrated battery design.
With torque now hitting 90 Nm, up from just that meager 30 Nm on the original, the Air S now delivers serious climbing power without the bulk. This brings light-assist bikes into full‑power territory, making acceleration and steep terrain feel effortless. Previously, ultra-lightweight e-bikes made serious compromises on power to achieve that level of near weightlessness. But now, they can actually compete on power, too.
Maxon’s unique split‑cylinder configuration also allows the motor to remain visually discreet. Combined with frame‑integrated batteries (400 Wh to start, with a 600 Wh option reportedly on the way), the system preserves clean lines and low weight. Many e-bikes sporting the motor simply won’t even look like e-bikes to the casual observer.
With the Air S, Maxon has struck a rare balance: ultralight design without compromise on torque. It catapults lightweight e-bikes into a new performance bracket, granting riders both agility and power. If you’ve long dreamed of an e-bike that feels like a mountain goat on the climb yet disappears under 16 kg, the Air S is probably your motor.
The trail-ready future is lighter, leaner, and looks ready to race uphill.
FTC: We use income earning auto affiliate links.More.
There you are, motoring along in your Volvo XC90 PHEV with the Pilot Assist engaged alongside a big 18-wheeler at a comfortable 70 mph cruise when the interstate starts to slowly sweep left. From the drivers’ seat, that semi on your right looks awfully close. As the steering wheel turns itself in your hand, you start to wonder if that truck’s a bit too close. The car isn’t doing anything wrong, but it’s too close for your comfort and you give the wheel a little nudge to hug the inside of the lane just a bit more.
These deeply personal preferences are tough to quantify, and highlight a simple fact about Advanced Driver Assistance Systems (ADAS) that the industry at-large hasn’t yet to come to terms with: when it comes to self-driving cars, one size does not fit all.
The Volvo experience I outlined above was very real, happening just as the wife and I were arguing about the relative merits of our very different choice in running shoes. She prefers the supportive, cushion-y ride of the HOKA Clifton 9s, which I’ve become convinced are The Devil™, preferring instead the zero-lift, no-cushion feel of my Xero Prio runners. The intervention with the Volvo interrupted that particular argument and started another. Namely, the one about why I had chosen that moment to “interfere” with the Pilot Assist.
“It was too close to that truck,” I explained. “Freaked me out.”
Advertisement – scroll for more content
“That’s how I feel in the Honda,” she said. “I’m always afraid that it’s going to try and put me into oncoming traffic.”
That’s when the idea for this post came to me. Because, as a car brand, it’s really not possible to just say that your car has ADAS or doesn’t have ADAS in a binary sense. That’s because these systems are not just proprietary to a given brand, they can vary from vehicle-to-vehicle within that brand, and each one can have distinct lane centering behavior, steering feel, lane change aggressiveness, braking distances, timing for its hand-off warnings, and probably a bunch of other stuff that I haven’t even thought of depending on what kind of cameras, sensors, and software the specific vehicle you are in is equipped with.
It’s a bit of a mess, in other words.
Opinion: Honda Sensing gets it right
I first experienced Honda’s ADAS in 2014, driving a then-new CR-V between Chicago and Bay Harbor, Michigan for an Acura press drive. Even in its early generations, I was impressed with the way it handled stop-and-go traffic, the way it guided you through turns, but didn’t do the turning for you, and the speed and intensity it used in braking very much mirrored my own.
Last month, I had a chance to test out the 2025 Honda Civic Sport Touring Hybrid for a week on Cape Cod. I picked the car up at PreFlight Parking outside Boston Logan, jammed it with luggage, and immediately hit heavy traffic, where the Honda Sensing Low-Speed Follow function took me right back to 2014, ratatouille-style, when my experience in that car had led me to believe that self-driving cars were right around the corner.
In the decade-plus since experiencing that first autonomous Acura, I’ve had the chance to experience Ford BlueCruise, Tesla Autopilot and FSD, and Mercedes-Benz DRIVE PILOT. And all, interestingly enough, in and around the Circuit of the Americas in Austin at one time or another over my three years of hosting Electrify Expo events there.
Each different OEMs’ system had its strengths and quirks. I remember Mercedes DRIVE PILOT as impressively precise, even clinical. The Ford system faded into memory. I couldn’t tell you anything about it, which is probably high praise. The Tesla systems, though, stood out — but for all the wrong reasons. Lane changes came too quickly, it accelerated too late, and too aggressively, and I often found myself bracing for collisions that (in fairness) never came.
More than once in those years I’ve wondered if maybe I’d just got it wrong back in 2014. That the tech was so new, and I had been so wow’ed by it initially, that I had got swept up in the hype of self-driving cars … but that drive in my wife’s XC90, back-to-back as it was with the Civic Hybrid, showed me that wasn’t it. Instead, I just didn’t like the way those other cars drove. Just like I don’t like the way HOKAs feel. And, just like my wife isn’t wrong for liking her gross marshmallow shoes (probably), I’m not wrong for preferring a more restrained digital co-pilot.
It’s a matter of fit, not fact — and that’s going to be a tough sell.
Everyone but me is wrong
Classic Carlin bit.
As the great George Carlin once asked, “Have you ever noticed that anyone who is driving slower than you is an idiot, and anyone driving faster than you is a maniac?”
ADAS systems live squarely in that same subjective space occupied by other drivers. If the bots brake too hard, steer too sharply, or get too close to the car head before changing lanes, they might not be technically doing anything wrong, but they’re maniacs – and right now, there’s no real way to know how one car’s ADAS is going to behave until you’ve spent some significant time behind the wheel. Like, “Uh-oh. I bought a thing and I hate it,” amounts of time.
That’s a problem for both buyers and sellers (to say nothing of manufacturers and software developers), because why would you risk demonstrating a system that might scare someone? How do you sell “confidence” and “convenience” when what feels confident and convenient to one driver feels reckless to another, and milquetoast to a third?
Lucky for you guys, I have a solution.
Jojo’s ADAS scorecard *
System
Lane centering bias
Lane change distance (car lengths)
Follow distance (default)
Braking force (max Gs)
Hands-off time allowed
Overall “feel”
Ford BlueCruise
Centered
~3.5
Moderate
0.30 G
Medium
Stable
Honda Sensing
Slight left bias
~2.5
Safe
0.35 G
Short
Balanced
Mercedes-Benz DRIVE PILOT
Centered
~3.5
Moderate
0.40 G
Long
Confident
Tesla Autopilot
Centered
~1.5
Close
0.45 G
Long (varies)
Aggressive
Volvo Pilot Assist
Slight right bias
~3.0
Moderate
0.30 G
Moderate
Cautious
NOTE: THESE ARE NOT REAL VALUES
That asterisk (*) is there because these are completely made up, imaginary values. They’re simply there to illustrate one way for manufacturers and dealers to share objective, quantifiable information about how their different ADAS systems behave. If it’s done right, it might help a car shopper get a better feel for how their next car might drive, and prevent them from spending their hard-earned cash on a car that drives like an idiot. Or a maniac.
That’s my take, anyway – what’s yours? Head down to the comments and let us know what values you’d like to see represented on an ADAS scorecard, and how much you’d be willing to base your next car buying decision on how it drives.
As for me, my X handle might be VolvoJo, but if I’m shopping for a car that’s going to drive me instead of the other way around, I might have to see if “HondaJo” is available.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.