Connect with us

Published

on

Indian Space Research Organisation (ISRO) on Saturday successfully launched the PSLV-C55 from Satish Dhawan Space Centre in Sriharikota and placed two Singaporean satellites for Earth observation into the intended orbit. ISRO chief S Somanath said, “Congratulations PSLV-C55/TeLEOS-2 Mission – the PSLV has placed both satellites in the intended orbit.”

The launch was completed at 14:19 hours IST, ISRO said.

Talking about the launch he said the Polar Satellite Launch Vehicle once again in its 57th flight demonstrated its reliability and suitability for commercial launch.

“This was a mission towards the east direction. and the inclination is 9.9 degrees, very precise. PSLV in its 57th flight has once again demonstrated its high reliability and suitability for the commercial missions of this class,” said the ISRO chief.

“This is the fifth launch in this edition. This rocket launch is being carried out with eight small payloads and we have prayed for the success of this launch,” the ISRO chairman said on Friday when he visited Goddesses Chengalamma Temple in Sullurpeta town of Tirupati district

This launch also has significance as far as the Indian space startup ecosystem is concerned as NSIL’S ( NewSpace India Limited) dedicated commercial rocket carried the two Singapore satellites as main payloads and seven non-separating payloads belonging to ISRO, Indian Institute of Astrophysics and startups Bellatrix and Dhruva Space.

The dedicated commercial mission was conducted through NSIL with TeLEOS-2 as primary satellite and Lumelite-4 as a co-passenger satellite. Both the satellites, which belong to Singapore, weigh about 741 kg and 16 kg, respectively and are intended to be launched into an Eastward low inclination orbit, ISRO said.

The TeLEOS-2 satellite is developed under a partnership between DSTA (representing the Government of Singapore) and ST Engineering. Once deployed and operational, it will be used to support the satellite imagery requirements of various agencies within the Government of Singapore. TeLEOS-2 carries a Synthetic Aperture Radar (SAR) payload. TeLEOS-2 will be able to provide all-weather day and night coverage, and capable of imaging at 1m full-polarimetric resolution.

The LUMELITE-4 satellite co-developed by the Institute for Infocomm Research of A*STAR and Satellite Technology and Research Centre (STAR) of the National University of Singapore.

LUMELITE4 is an advanced 12U satellite developed for the technological demonstration of the High-Performance Space-borne VHF Data Exchange System (VDES). Using the VDES communication payload, it aims to augment Singapore’s e-navigation maritime safety and benefit the global shipping community.

The mission has the PSLV Orbital Experimental Module (POEM), where the spent PS4 stage of the launch vehicle would be utilized as an orbital platform to carryout scientific experiments through non-separating payloads. The payloads belong to ISRO/Department of Space, Bellatrix, Dhruva Space, and Indian Institute of Astrophysics, ISRO stated.


Xiaomi launched its camera focussed flagship Xiaomi 13 Ultra smartphone, while Apple opened it’s first stores in India this week. We discuss these developments, as well as other reports on smartphone-related rumours and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Published

on

By

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Astronomers have discovered the third interstellar comet to pass through our solar system. Named 3I/ATLAS (initially A11pl3Z), it was first spotted July 1 by the ATLAS telescope in Chile and confirmed the same day. Pre-discovery images show it in the sky as far back as mid-June. The object is racing toward the inner system at roughly 150,000 miles per hour on a near-straight trajectory, too fast for the Sun to capture. Estimates suggest its nucleus may be 10–20 km across. Now inside Jupiter’s orbit, 3I/ATLAS will swing closest to the Sun in October and should remain observable into late 2025.

Discovery and Classification

According to NASA, in early July the ATLAS survey telescope in Chile spotted a faint moving object first called A11pl3Z, and the IAU’s Minor Planet Center confirmed the next day that it was an interstellar visitor. The object was officially named 3I/ATLAS and noted as likely the largest interstellar body yet detected. At first it appeared to be an ordinary near-Earth asteroid, but precise orbit measurements showed it speeding at ~150,000 mph – far too fast for the Sun to capture. Astronomers estimate 3I/ATLAS spans roughly 10–20 km across. Signs of cometary activity – a faint coma and short tail – have emerged, earning it the additional comet designation C/2025 N1 (ATLAS).

Studying a Pristine Comet

3I/ATLAS was spotted well before its closest approach, giving astronomers time to prepare detailed observations. It will pass within about 1.4 AU of the Sun in late October. Importantly, researchers can study it while it is still a pristine frozen relic before solar heating alters it. As Pamela Gay notes, discovering the object on its inbound leg leaves “ample time” to analyze its trajectory. Astronomers are now racing to obtain spectra and images – as Chris Lintott warns, the comet will be “baked” by sunlight as it nears perihelion.

Determining its composition and activity is considered “a rare chance” to learn how planets form in other star systems. With new facilities like the Vera C. Rubin Observatory coming online, researchers expect more such visitors in the years ahead. 3I/ATLAS offers a rare chance to study material from another star system.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Science

NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax

Published

on

By

NASA's New Horizons Proves Deep-Space Navigation via Stellar Parallax

NASA’s New Horizons spacecraft carried out an unprecedented deep-space star navigation test while 438 million miles from Earth. Using its long-range camera in April 2020, it captured images of Proxima Centauri and Wolf 359, which appeared slightly shifted in the sky compared to Earth’s view – a striking demonstration of stellar parallax. It was the first-ever demonstration of deep-space stellar navigation. By comparing these images to Earth-based observations and a 3D star chart, scientists calculated New Horizons’ position to within about 4.1 million miles, only about 26 inches across the United States.

Stellar Parallax Test

According to the paper describing the results, accepted for publication in The Astronomical Journal, New Horizons’ camera imaged Proxima Centauri (4.2 light-years away) and Wolf 359 (7.86 light-years) on April 23, 2020. From the spacecraft’s distant vantage point, the two stars appear in different positions than seen from Earth – the essence of stellar parallax. By comparing those images with Earth-based data and a three-dimensional map of nearby stars, the team worked out the probe’s location to within about 4.1 million miles.

As lead author Tod Lauer explained, “Taking simultaneous Earth/Spacecraft images we hoped would make the concept of stellar parallaxes instantly and vividly clear”. He added, “It’s one thing to know something, but another to say ‘Hey, look! This really works!’”.

New Horizons and Future Missions

New Horizons, the fifth spacecraft to leave Earth and reach interstellar space, flew past Pluto and its moon Charon in 2015, sending home the first close-up images of those distant icy worlds. Now on an extended mission, the probe is studying the heliosphere.

New Horizons’ principal investigator Alan Stern called the parallax test “a pioneering interstellar navigation demonstration” that shows a spacecraft can use onboard cameras “to find its way among the stars”, in a statement. He also noted it “could be highly useful for future deep space missions in the far reaches of the Solar System and in interstellar space”

Continue Reading

Science

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Published

on

By

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Marine animals like fish and seals have long inspired ocean engineers due to their fluid, energy-efficient movements. Now, researchers are turning to these sea animals to create a new class of underwater gliders that requires very little energy, according to a team led by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison. They used artificial intelligence to design forms that slide through the water with less resistance, making long-term ocean exploration more efficient. These gliders, fabricated via 3D printing, promise better data collection on currents, salt levels, and climate impacts.

AI-Powered 3D Designs Create Energy-Efficient Underwater Gliders Inspired by Marine Life Forms

As per a study published on the arXiv preprint server, the team used machine learning to create and simulate numerous novel 3D glider shapes. By comparing traditional models—like submarines and sharks—with digitally altered versions, their algorithm learnt how different designs behaved at various “angles-of-attack.” A neural network then evaluated the lift-to-drag ratio of each shape, identifying those most likely to glide efficiently through water. These shapes were then fabricated using lightweight materials that minimised energy use.

In tests, two AI-generated prototypes—one shaped like a two-winged plane and the other like a four-finned flatfish—were built and tested both in wind tunnels and underwater. Key hardware was integrated with the gliders, including buoyancy control by a pump and a mass shifter to move the angle during displacements. The new gliders, with better shapes and lift-to-drag ratios, could travel farther on less power than traditional torpedo-shaped types.

The team added that what they are doing not only makes new types of designs possible but also reduces design times and cuts the cost since it doesn’t require physical prototyping. “This high degree of shape diversity hasn’t been investigated before,” Peter Yichen Chen, an MIT postdoc and co-lead author on the project, mentioned. He also noted that their AI pipeline allows testing forms that would be “very taxing” for humans to manually design.

The future plans are to produce slimmer and more manoeuvrable gliders and to improve the AI system with more configurable options. Intelligent bioinspired vehicles like these, the researchers say, will be essential in studying dynamic ocean environments that are changing quickly with the intensifying demands of industrial activity, ultimately offering more flexible and efficient ways for us to explore Earth’s last frontier.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Observations Give Forgotten Globular Cluster Its Moment to Shine



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Trending