Connect with us

Published

on

Japan’s ispace said its attempt to make the first private moon landing had failed after losing contact with its Hakuto-R Mission 1 (M1) lander when it unexpectedly accelerated and probably crashed on the lunar surface.

The startup said it was possible that as the lander approached the moon, its altitude measurement system had miscalculated the distance to the surface.

“It apparently went into a free-fall towards the surface as it was running out of fuel to fire up its thrusters,” Chief Technology Officer Ryo Ujiie told a news conference on Wednesday.

It was the second setback for commercial space development in a week after SpaceX‘s Starship rocket exploded spectacularly minutes after soaring off its launch pad.

A private firm has yet to succeed with a lunar landing. Only the United States, the former Soviet Union and China have soft-landed spacecraft on the moon, with attempts in recent years by India and a private Israeli company also ending in failure.

Ispace, which delivers payloads such as rovers to the moon and sells related data, had only just listed on the Tokyo Stock Exchange two weeks ago and a frenzy of excitement around its prospects had driven up its shares some seven-fold since then.

But disappointment led to a glut of sell orders on Wednesday. After being untraded all day, the stock finished down 20 percent in a forced closing price decided by the bourse that reflects the balance of buy and sell orders.

Japan’s top government spokesperson Hirokazu Matsuno said while it was sad that the mission did not succeed, the country wants ispace to “keep trying” as its efforts were significant to the development of a domestic space industry.

Japan, which has set itself a goal of sending Japanese astronauts to the moon by the late 2020s, has had some recent setbacks. The national space agency last month had to destroy its new medium-lift H3 rocket upon reaching space after its second-stage engine failed to ignite. Its solid-fuel Epsilon rocket also failed after launch in October.

Brakes on a high slope

Four months after launching from Cape Canaveral, Florida, on a SpaceX rocket, the M1 lander appeared set to autonomously touch down at about 1:40 am Japan time (1640 GMT Tuesday), with an animation based on live telemetry data showing it coming as close as 90 metres (295 feet) from the lunar surface.

By the expected touchdown time, mission control had lost contact with the lander and engineers appeared anxious over the live stream as they awaited signal confirmation of its fate which never came.

The lander completed eight out of 10 mission objectives in space that will provide valuable data for the next landing attempt in 2024, Chief Executive Takeshi Hakamada said.

Roughly an hour before planned touchdown, the 2.3 metre-tall M1 began its landing phase, gradually tightening its orbit around the moon from 100 km (62 miles) above the surface to roughly 25 km, travelling at nearly 6,000 km/hour (3,700 mph).

At such velocity, slowing the lander to the correct speed against the moon’s gravitational pull is like squeezing the brakes of a bicycle right at the edge of a ski-jumping slope, Ujiie has said.

The craft was aiming for a landing site at the edge of Mare Frigoris in the moon’s northern hemisphere where it would have deployed a two-wheeled, baseball-sized rover developed by the Japan Aerospace Exploration Agency, Tomy and Sony. It also planned to deploy a four-wheeled rover dubbed Rashid from the United Arab Emirates.

The lander was carrying an experimental solid-state battery made by Niterra among other devices to gauge their performance on the moon.

The mission was insured by Mitsui Sumitomo Insurance, an MS&AD Insurance Group unit, and ispace said it may receive some compensation.

© Thomson Reuters 2023
 


Smartphone companies have launched many compelling devices over the first quarter of 2023. What are some of the best phones launched in 2023 you can buy today? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

Published

on

By

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

X-59 of NASA has been designed from the ground to fly at a faster speed of sound without making thunderous sonic booms, which are usually associated with supersonic flight. This 99-foot aircraft, which features a logically elongated design, jettisons the front windscreen and is now heading towards the runway. Pilots can see what is at the front through an augmented reality (AR) enabled closed-circuit camera system, which is termed by NASA as the External Vision System (XVS). NASA took control of an experimental aircraft and performed taxi tests on it during this month.

X-59’s Futuristic Design: Eliminating Sonic Booms with External Vision System

According to As per NASA, the test pilot Nils Larson, during the test, drove the X-59 at the runway by keeping a low speed. This is done to ensure the working of the steering and braking systems of the jet. Lockheed Martina and NASA would perform the taxi tests at high speed, in which the X-59 will move faster to make it to the speed at which it will go for takeoff.

Taxi tests are held at the U.S. Air Force’s Plant 42 facility in Palmdale, California. The contractors and the Air Force utilise the plant for manufacturing and testing the aircraft. Lockheed Martin has developed this aircraft, whose Skunk Works is found in Plant 42.

Taxi Tests at Plant 42: NASA and Lockheed Martin Prepare X-59 for First Flight

Some advanced aircraft of the U.S. military were developed to a certain extent at Plant 42, together with the B-2 Spirit, the F-22 Raptor, and the uncrewed RQ-170 Sentinel spy drone.

SOFIA airborne observatory aircraft, which is a flying telescope called Plant 42, home recently retired. The space shuttle of the agency is the world’s first reusable spacecraft; these were assembled and tested at the facility.

Such taxi tests have started over the last months. NASA worked in collaboration with the Japan Aerospace Exploration Agency for testing a scale model of the X-59 in the supersonic wind tunnel to measure the noise created under the aircraft.

Continue Reading

Science

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

Published

on

By

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

In recent observations, NASA’s Juno spacecraft has significantly detected the presence of a variety of plasma waves. The emergence of these waves on Jupiter’s powerful magnetic field is projected to be surprising, as their existence was never marked in the planetary magnetospheres. However, scientists might have come out with an explanation. Furthermore, the current studies have been questioned by scientists surfacing the activity at the North Pole. The article below will exemplify the findings and shed light on the plasmas. 

Uncovering Mystery at Jupiter’s North Pole 

According to a paper published in the Physical Review Letters, the scientists have uncovered the explanation behind the presence of these strange waves. They mainly suspect that the formation of these waves lies behind their evolution as a plasma, which later transforms into something different. 

Inside Jupiter’s Plasmas and Their Variants 

Plasmas are best referred to as the waves that pass through the amalgamation of the charged particles in the planet’s magnetosphere.These plasma waves come across in two forms: One, Langmuir waves, which are high-pitched lights crafted with electrons, while the other, Alfven waves, are slower, formed by ions (heavy particles). 

About Juno’s Findings

As unveiled by the Juno, the findings turned out to be questionable after the scientists noted that in Jupiter’s far northern region, the plasma waves were relatively slower. The magnetic field is about 40 times stronger than the Earth’s, but scientists were shocked to witness the results as the waves were slower. To analyse this further, a team from the University of Minnesota, led by Robert Lysak, identified the possibility of Alfven waves transforming into Langmuir waves. Post studying the data extracted from the Juno, the researchers then began to compare the relationship between the plasma wave frequency and number. 

According to Lysak’s research team, near Jupiter’s north pole, there might be a potential pathway of Alfven waves, which are massive in numbers, transforming into Langmuir waves. Scientists are also predicting that the reason behind evolution might be strong electrons that are shooting upwards at a very high energy. This discovery was made in the year 2016. Considering the current findings, the researchers indicate that Jupiter’s magnetosphere may comprise a new type of plasma wave mode that occurs during high magnetic field strength. 

Continue Reading

Science

Russia Expands Space Weather Network, Launches Iran’s Nahid-2 in Joint Mission

Published

on

By

Russia Expands Space Weather Network, Launches Iran’s Nahid-2 in Joint Mission

Russia sent two new Ionosfera-M satellites into orbit on a Soyuz-2 on July 25, 2025. Rocket 1b from the Vostochny Cosmodrome in Siberia. The mission also placed Iran’s Nahid-2 communications satellite in orbit. These satellites will complement a four-satellite constellation aimed at keeping track of Earth’s upper atmosphere and space weather conditions, particularly the solar wind that can knock satellites and communications systems offline. The flight indicates Russia’s scientific ambitions and collaboration with Iran’s space program, showing Russia’s function in launching Tehran’s orbital assets. Both countries gain from the collaborative mission.

Russian Space Weather Satellites

According to official sources, Russia’s new Ionosfera-M probes, 3 and 4, follow two identical satellites launched in November 2024. Together the four craft form a mini-constellation orbiting about 820 kilometers above Earth. The network is explicitly designed to study space weather in the ionosphere, the charged upper atmosphere.

It will track solar wind and related phenomena that can disturb communications and navigation systems. The latest pair is being inserted into an orbital plane perpendicular to the first two, greatly expanding three-dimensional coverage of near-Earth space. They also carry a new Ozonometr-TM instrument to measure upper-atmosphere ozone for the first time in this mission.

Iranian Payload and International Implications

An Iranian communications satellite, Nahid-2, was also aboard the Soyuz mission.Nahid-2 is intended to bolster Iran’s civilian communications in space, an important capability given Iran’s limited homegrown launch capabilities. Russia’s role in the delivery of the payload reflects cooperation between the countries in space technology.

With the help of Russia, Iran can continue its satellite building efforts, even though these are restricted by the international community from also involving rocket export limitations. That Moscow has such a product even while Iran is under sanctions underscores the depth of their two-nation space partnership. This mission represents Russia’s support for ally’s space aspirations and the broader geopolitical implications of such collaborative efforts.

Continue Reading

Trending