Connect with us

Published

on

Japan’s ispace said its attempt to make the first private moon landing had failed after losing contact with its Hakuto-R Mission 1 (M1) lander when it unexpectedly accelerated and probably crashed on the lunar surface.

The startup said it was possible that as the lander approached the moon, its altitude measurement system had miscalculated the distance to the surface.

“It apparently went into a free-fall towards the surface as it was running out of fuel to fire up its thrusters,” Chief Technology Officer Ryo Ujiie told a news conference on Wednesday.

It was the second setback for commercial space development in a week after SpaceX‘s Starship rocket exploded spectacularly minutes after soaring off its launch pad.

A private firm has yet to succeed with a lunar landing. Only the United States, the former Soviet Union and China have soft-landed spacecraft on the moon, with attempts in recent years by India and a private Israeli company also ending in failure.

Ispace, which delivers payloads such as rovers to the moon and sells related data, had only just listed on the Tokyo Stock Exchange two weeks ago and a frenzy of excitement around its prospects had driven up its shares some seven-fold since then.

But disappointment led to a glut of sell orders on Wednesday. After being untraded all day, the stock finished down 20 percent in a forced closing price decided by the bourse that reflects the balance of buy and sell orders.

Japan’s top government spokesperson Hirokazu Matsuno said while it was sad that the mission did not succeed, the country wants ispace to “keep trying” as its efforts were significant to the development of a domestic space industry.

Japan, which has set itself a goal of sending Japanese astronauts to the moon by the late 2020s, has had some recent setbacks. The national space agency last month had to destroy its new medium-lift H3 rocket upon reaching space after its second-stage engine failed to ignite. Its solid-fuel Epsilon rocket also failed after launch in October.

Brakes on a high slope

Four months after launching from Cape Canaveral, Florida, on a SpaceX rocket, the M1 lander appeared set to autonomously touch down at about 1:40 am Japan time (1640 GMT Tuesday), with an animation based on live telemetry data showing it coming as close as 90 metres (295 feet) from the lunar surface.

By the expected touchdown time, mission control had lost contact with the lander and engineers appeared anxious over the live stream as they awaited signal confirmation of its fate which never came.

The lander completed eight out of 10 mission objectives in space that will provide valuable data for the next landing attempt in 2024, Chief Executive Takeshi Hakamada said.

Roughly an hour before planned touchdown, the 2.3 metre-tall M1 began its landing phase, gradually tightening its orbit around the moon from 100 km (62 miles) above the surface to roughly 25 km, travelling at nearly 6,000 km/hour (3,700 mph).

At such velocity, slowing the lander to the correct speed against the moon’s gravitational pull is like squeezing the brakes of a bicycle right at the edge of a ski-jumping slope, Ujiie has said.

The craft was aiming for a landing site at the edge of Mare Frigoris in the moon’s northern hemisphere where it would have deployed a two-wheeled, baseball-sized rover developed by the Japan Aerospace Exploration Agency, Tomy and Sony. It also planned to deploy a four-wheeled rover dubbed Rashid from the United Arab Emirates.

The lander was carrying an experimental solid-state battery made by Niterra among other devices to gauge their performance on the moon.

The mission was insured by Mitsui Sumitomo Insurance, an MS&AD Insurance Group unit, and ispace said it may receive some compensation.

© Thomson Reuters 2023
 


Smartphone companies have launched many compelling devices over the first quarter of 2023. What are some of the best phones launched in 2023 you can buy today? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s New Missions Will Map the Sun and the Cosmos

Published

on

By

NASA’s New Missions Will Map the Sun and the Cosmos

Two NASA missions aimed at advancing space research are scheduled for launch aboard a SpaceX Falcon 9 rocket on March 2 from Launch Complex 4E at Vandenberg Space Force Base in California. The spacecraft, PUNCH and SPHEREx, have been designed for separate but complementary scientific objectives. While PUNCH will focus on the dynamics of the Sun’s corona and solar wind, SPHEREx will survey the broader universe using infrared observations. This dual launch, facilitated under NASA’s Launch Services Program, is expected to enhance understanding of cosmic evolution and space weather phenomena.

PUNCH to Study Solar Wind and Space Weather

As reported by Space.com, according to NASA, the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission consists of four small satellites designed to create three-dimensional images of the Sun’s outer atmosphere. These satellites will use polarized light to track solar events such as coronal mass ejections (CMEs), helping scientists determine their trajectories and potential impacts on Earth. Speaking to Space.com, Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center, stated that the mission is expected to provide significantly improved resolution compared to previous heliophysics missions like STEREO.

SPHEREx to Map the Universe in Infrared

As per NASA, the Spectro-Photometer for the History of the Universe, Epoch of Reionisation, and Ices Explorer (SPHEREx) will conduct an extensive infrared survey of the entire sky every six months. Unlike the James Webb Space Telescope, which captures highly detailed images of specific regions, SPHEREx is designed to generate broad cosmic maps in 102 wavelengths. In a statement to Space.com, Phil Korngut, SPHEREx instrument scientist at the California Institute of Technology, noted that the data will contribute to research on cosmic inflation, galaxy formation, and the origins of water in planetary systems.

Both missions are expected to play a crucial role in expanding current knowledge of space phenomena, with their launch anticipated to provide valuable insights into both solar and cosmic environments.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

SpaceX Falcon 9 Launches Athena Lander, NASA’s Lunar Trailblazer to Moon

Published

on

By

SpaceX Falcon 9 Launches Athena Lander, NASA's Lunar Trailblazer to Moon

A SpaceX Falcon 9 rocket lifted off from Kennedy Space Center on February 26, 2025, carrying the Athena lunar lander and NASA’s Lunar Trailblazer orbiter. The launch, which took place at 7:16 p.m. EST from Launch Complex-39A, marked a significant step in lunar exploration. Athena, developed by Intuitive Machines, is designed to investigate lunar water ice deposits, while Lunar Trailblazer will study similar phenomena from orbit.

Scientific Goals and Technology

As per reports, according to NASA, Athena is equipped with ten scientific instruments, including the Polar Resources Ice Mining Experiment 1 (PRIME-1). The experiment consists of the Regolith Ice Drill for Exploring New Terrain (TRIDENT) and the Mass Spectrometer observing lunar operations (MSolo), both of which will work to extract and analyse samples from beneath the lunar surface. These investigations aim to provide critical data on the presence of water ice, supporting future in-situ resource utilisation (ISRU) efforts.

Lunar Trailblazer, an orbiter developed by NASA, will complement Athena’s findings by mapping water ice deposits across the lunar surface. Scientists have stated that its data will enhance the understanding of lunar ice distribution, particularly in the Mons Mouton region, where Athena is expected to land.

Landing Plans and Exploration Vehicles

Reports indicate that Athena will reach lunar orbit in four to five days and attempt a landing between 1.5 and three days after that. The mission will last approximately ten Earth days. To extend its exploration capabilities, Athena carries two secondary vehicles: MAPP, a rover designed by Lunar Outpost, and Grace, a hopping robot developed by Intuitive Machines. Grace will explore shadowed craters inaccessible to wheeled vehicles, while MAPP will establish a lunar cellular network using the Lunar Surface Communications System (LSCS) developed by Nokia Bell Labs.

Challenges and Expectations

This mission follows Intuitive Machines’ IM-1 mission, which achieved the first soft lunar landing by a private company but encountered a landing issue that affected data transmission. Trent Martin, Senior Vice President of Space Systems at Intuitive Machines, stated to Space.com that improved landing accuracy is a primary focus for IM-2.

NASA’s contract for IM-2 was initially valued at $47 million but increased to $62.5 million due to additional requirements, including temperature data collection. Reports suggest that Athena and Lunar Trailblazer are part of a broader lunar exploration effort, joining missions such as Firefly Aerospace’s Ghost Riders in the Sky and ispace’s Resilience lander, both launched earlier in 2025.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

Published

on

By

Scientists Find a New Way To Turn Stale Bread Into Carbon Electrodes

A team of engineers has introduced two innovative techniques for shaping carbon electrodes derived from bread. The methods, which build upon previous research, enable the formation of electrodes in precise and sturdy forms. These advancements could enhance the sustainability of electrode production by utilising stale bread, a commonly wasted food item. The process involves heating bread at high temperatures in an oxygen-free environment, converting it into a carbon-based material suitable for applications such as desalination systems. The research aims to refine this process for potential large-scale production, offering an eco-friendly alternative for carbon electrode manufacturing.

New Techniques for Molding Carbon Electrodes

According to the study published in Royal Society Open Science, the research was conducted by David Bujdos, Zachary Kuzel and Adam Wood from Saint Vincent College and the University of Pittsburgh. The team built upon earlier efforts by Adam Wood, who had previously demonstrated that stale bread could be used to produce carbon electrodes due to its high carbon content.

The latest development introduces two techniques that allow for shaping the electrodes into desired forms. The first method involves compressing bread using a 3D-printed mold before subjecting it to the heating process. This technique enables the formation of precise electrode shapes. In a test, a zigzag mold was used to demonstrate its effectiveness.

The second method requires blending bread with water before shaping it manually. Once formed, the material is dried and carbonised in an oven. While this approach provides less precision, the resulting electrodes are reportedly more durable.

Potential for Sustainable Electrode Production

As per reports, the researchers believe these methods could contribute to the development of a low-cost capacitive desalination system. The aim is to create an environmentally friendly solution that reduces food waste while addressing water purification challenges. Efforts are underway to refine the process and explore possibilities for large-scale implementation.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


People in Modern Societies Sleep More but Have Irregular Sleep Cycles



Microsoft Copilot App for macOS Released; iPhone and iPad Apps Get Updates

Continue Reading

Trending