It’s a tale as old as time. Man sees electric bike advertisement touting 50-mile range. Man buys e-bike. Man’s first ride gets 25 miles before the battery’s charge dwindles. Man is justifiably disappointed.
So what gives? Why does it seem like you can never trust the range numbers that the electric bike makers tell us?
The short answer is that it seems that way because that’s the way it is. You simply can’t trust the range figure printed on an electric bicycle’s marketing material. At least not most of the time.
There are several good reasons for this, so let’s break them down.
No standard for range testing for e-bikes
First of all, e-bikes aren’t like cars. There aren’t any standards for battery range testing on e-bikes. It’s not like the “EPA-rated 32 mpg” or “NEDC-tested 250 miles of range” you’ll see in car ads.
Range ratings for e-bikes aren’t determined by outside agencies. They are determined by the bike makers themselves. In the best case, the printed distance figures come from real-world range testing. Some companies like Aventon and Lectric eBikes have stepped up with real-world range data on their sites for each level of pedal assist or throttle riding. That’s the best case. But in the worst case, some companies just give us numbers that they pull out of a hat or theorize that their bike can probably achieve.
Which companies are which? Without hard data displayed on the company’s site, it’s hard to know. That’s the problem. Unless a company puts real-world testing data out there, we’re left to guess.
Range varies WIDELY based on a number of factors
This is actually the single largest reason that you almost never actually achieve the range quoted by the e-bike manufacturer. There is a huge variance in the real world battery range of an e-bike on a single charge. There are literally dozens of factors that have significant impacts on range.
Even if an e-bike company wanted to give one number as the ultimate, end all and be all, certified range of their e-bike – a number that they are confident you can achieve – they simply wouldn’t be able to do it. It just depends on too many factors.
Carrying a passenger (or two)? That’ll ding your range
It’s amazing how many factors can have a measurable impact on e-bike range.
Are your tires low on air or pumped to the max? Are you riding uphill or downhill? Tailwind or headwind? Brake rub? Crouched or sitting up tall? Is the road wet? Did you eat a big lunch? Have you eaten big lunches for the last 30 years? What gear are you in? What power level are you in? Knobby or smooth tires? Are you wearing a backpack or carrying cargo on a rack or basket? Any passengers with you? Are you riding on asphalt? Concrete? Dirt? Gravel? Sand? The list goes on and on.
Depending on the answers to those questions, the exact same electric bike could travel 15 miles or 60 miles on a single battery charge. Yeah, it’s wild.
Many people expect e-bike ranges to be more repeatable, similar to car mileage. But then again, consider that unlike cars, which often outweigh their drivers by 20 to 1, you probably outweigh your bike by 3 or 4 to 1. So changes in you or your environment have a much bigger impact on range than they do for other larger vehicles likes cars and trucks.
All of these factors make it harder for e-bike companies to offer a realistic range, and so they usually test for the best-case scenario. That means a lightweight rider (often listed at 150 lb., even though the average American adult female and male each weigh 170 and 200 lb., respectively) riding on a pancake flat and smooth surface with ultra-high air pressure in the tires and with the bike set into its lowest power mode. It’s not “cheating,” assuming they provide the real test data. It’s just putting their best pedaling foot forward. But in the real world, most of us won’t be riding in the same ideal conditions. So the “maximum” range that most e-bike companies quote simply aren’t realistic for most of us.
Throttle versus pedal assist range
This is another major factor affecting range. Any Europeans reading this, you poor things can ignore this section since your governments don’t believe you can be trusted with throttles. For the Americans, Canadians, Australians, and civil-disobeying Europeans still here with me, listen up.
The general rule of thumb is that throttle riding will nearly halve your range compared to pedal assist. That’s why most e-bike companies will list their maximum range based on pedal assist. When you see an e-bike listed as having a “50-mile range,” that’s almost certainly the pedal assist range. The throttle range is probably closer to 25-30 miles, depending on conditions. A true 50-mile throttle-only range would usually require having a battery of at least 1,300 Wh, or around twice the size of an average e-bike battery.
Some companies like Rad Power Bikes are pretty good about listing a range of ranges (get it?) instead of a single number. For example, they tell us that the RadRunner 3 Plus’s range is “Estimated 25-45+ miles per charge (40-72+ km)” in the specs section of the product page, though they’re still guilty of the slightly misleading “Up to 45 miles per charge” phrase in larger font on the main page.
How can you know an electric bike’s ‘real’ range?
There’s a messy, overgeneralized rule of thumb that I created to quickly judge approximate bike range. But be warned: It requires a small amount of math. Don’t worry though, you can handle it.
At 20 mph, my messy rule of thumb is 25 Wh/mi for throttle riding and 15 Wh/mi for pedal assist riding. This is for a decently powerful level – we’re not talking Eco Mode or Level 1 pedal assist here. At very low-power pedal assist where the rider does most of the work, it is possible to even achieve closer to 5 Wh/mi.
For anyone who uses a more sensical system of measurement, that means when riding at 32 km/h, you can generally expect somewhere around 15 Wh/km on throttle and 9 Wh/km on pedal assist, though it can drop as low as 3 Wh/km on really low power pedal assist.
So to use my rule of thumb, simply divide the watt-hour capacity (Wh) of the battery by my efficiency numbers and you’ll get the rough range. An e-bike like the RadRunner 3 Plus mentioned above with a 624 Wh battery should get roughly 624 Wh ÷ 25 Wh/mi = 25 miles of range on throttle-only riding. In sensical measurements, that’s 624 Wh ÷ 15 Wh/km = 41 km. That number actually aligns nicely with Rad’s published figures. Go figure.
Like I said though, this is a rough approximation. It can vary based on many factors. If you’re a heavy rider, you might even use slightly higher constants than I mentioned, such as 30 Wh/mi instead of 25 Wh/mi. Other factors like terrain and tire width make a big impact on this guesstimate system as well.
For science, I once took an e-bike with a teeny tiny 180 Wh battery on a long ride at the lowest possible power setting and with significant muscle effort on my part. I got a range of 56 miles (90 km), or close to 3 Wh/mi. It was grueling, but it showed what is possible, and how companies can get away with claiming sky-high ranges that may be possible, even if unlikely.
So sure, my generalized rule of thumb above uses fuzzy numbers. But they aren’t anywhere near as fuzzy as the ratings from most e-bike manufacturers.
In conclusion, I don’t intend to claim that there is malice on the part of most companies that market e-bikes. Their goal isn’t to mislead. They’re just caught in an unfortunate system where people want a short and pretty answer to what is under the surface actually a long and ugly question, “How far does it go on a charge?”
So until people are prepared to receive a table of data in response to that question, companies are basically forced to choose between giving an unimpressive albeit more honest range spectrum like, “It can go 20-45 miles per charge,” or to just give the rosier answer of “It can go 45 miles.” With millions of dollars on the line, you can guess which one they prefer to choose.
FTC: We use income earning auto affiliate links.More.
Taiwanese smart-scooter pioneer Gogoro is taking a step into more accessible territory with its newest model, the Ezzy. The company hopes to leverage its massive lead in battery-swapping technology while also bringing its smart scooters to a broader audience by lowering its price point.
Designed as a no-frills, budget-friendly ride that doesn’t skimp on modern conveniences, Ezzy is priced around NT$59,980 (around US $2,000). Once you add in the government subsidies from its native Taiwan, that price drops below NT$30,000 (around US $1,000). For Gogoro, this is the smartscooter distilled to its essential core: practical, connected, and ready for daily life.
The Ezzy looks like it is trying to build on Gogoro’s success with its 2024 Jego launch, the company’s previous forray into lower cost electric scooters. The Jego was a massive success and wound up resulting in around 40% of the company’s sales. Now the Ezzy looks to keep the good vibes rolling in a sleek, compact, and intuitive package.
The scooter features a rounded, minimalist body with a durable front panel and straightforward controls. Practicality is the guiding principle: a 68 cm (27 inch) long seat, spacious footwell, and a 28 liter (7.4 gallon) under-seat storage compartment, which the company says is large enough for two helmets – if they’re a 3/4 and a half helmet. Put it all together, and the features sound like they should make the Ezzy ideal for urban errands or weekend jaunts. Add in a built-in cupholder and flip-out footrests, and you’ve got a scooter designed to seamlessly slot into everyday routines with one or two riders aboard.
Advertisement – scroll for more content
The design is cute, but it’s under the panels where Gogoro usually tries to set itself apart. Ezzy is powered by a new hub motor capable of speeds up to 68 km/h (42 mph), high enough for city traffic while keeping maintenance low. The last time I was scootering around in Taipei, those speeds felt like plenty on the congested streets.
And while Gogoro’s scooters have long been impressive, the most important part of the company’s offerings isn’t even its rides, it’s how they’re powered. Ezzy integrates directly into Gogoro’s famed battery-swapping network, which includes thousands of swap stations around Taiwan.
Riders can skip charging downtime by swapping depleted packs at GoStation kiosks, which regularly see hundreds of thousands of battery swaps every day.
Electrek’s Take
In terms of performance, Ezzy strikes a balance. It’s not built for speed demons, but it likely won’t bog down in traffic either. It’s not overflowing with gadgets, yet includes thoughtful features that matter – cup holder, flip-out footrests, and room for two helmets. At around US $2,000 retail before subsidies, it’s clearly aimed at broadening access to smart two-wheeling in dense cities. And since the combustion engine scooters still dominate cities in most countries, making electric alternatives more affordable is a key part of displacing those heavy polluters.
This feels less like a normal launch and more like a strategic pivot for Gogoro. While the company’s premium Smartscooters – like the sports car-inspired Pulse or high-performance SuperSport – are impressive, they’re also spendy and niche. Ezzy, by contrast, looks like what Gogoro might want every city overpopulated by cars to embrace: a stylish, comfortable, and economical electric scooter that’s accessible to the masses.
It’s still early days and Gogoro hasn’t confirmed availability beyond Taiwan, but enthusiasm for affordable, swappable-battery electric scooters is growing. If Ezzy finds even moderate success in its initial market, it could pave the way for Gogoro to expand its smart ecosystem deeper into urban centers worldwide.
In short, Ezzy may not be a headline-grabbing performance machine, but that’s exactly the point. Sometimes progress happens not with fireworks, but with smart, thoughtful moves that make electric mobility more attainable for everyone. And that’s an evolution worth riding along with.
FTC: We use income earning auto affiliate links.More.
The e-bike industry in the West has long been a tale of two territories. North Americans enjoy higher speeds and power limits for their electric bicycles while Europeans are held to much stricter (i.e. slower and lower) speed and power limits. However, things might change based on current discussions on rewriting European e-bike regulations.
New power levels are not totally without precedent, either. The UK briefly considered doubling its own e-bike power limit from 250 watts (approximately 1/3 horsepower) to 500 watts, though the move was ultimately abandoned.
But this time, the call for more power is coming from within the house – i.e., Germany. The Germans are the undisputed leaders and trend setters in the European e-bike market, accounting for around two million sales of e-bikes per year. Home to leading e-bike drive makers like Bosch, the country has yet another advantage when it comes to making – or regulating – waves in the industry.
And while there aren’t any pending law changes, the largest German trade organization ZIV (Zweirad-Industrie-Verband), which is highly influential in achieving such changes, is now discussing what it believes could be pertinent updates to current EU electric bike regulations.
Advertisement – scroll for more content
Some of the new regulations involve creating rules maxing out power at levels such as 400% or 600% of the human pedaling input. But a key component of the proposed plan includes changing the present day power limit of e-bikes from 250W of continuous power at the motor to 750W of peak power at the drive wheel.
The difference includes some nuance, since continuous power is often considered more of a nominal figure, meaning nearly every e-bike motor in Europe wears a “250W” or less sticker despite often outputting a higher level of peak power. Even Bosch, which has to walk the tight and narrow as a leader in the European e-bike drive market, shared that its newest models of motors are capable of peak power ratings in the 600W level. That’s still far from the commonly 1,000W to 1,300W peak power seen in US e-bike motors, but offers a nice boost over an actual 250W motor.
Other new regulations up for discussion include proposals to limit fully-loaded cargo e-bike weights to either 250 kg (550 lb) for two-wheelers or 300 kg (660 lb) for e-bikes with more than two wheels. As road.cc explained, ZIV also noted that, “separate framework conditions and parameters must be defined for cargo bikes weighing more than 300 kg (see EN 17860-4:2025) as they differ significantly from EPACs and bicycles in their dynamics, design and operation.” Such heavy-duty cargo e-bikes, which often more closely resemble small delivery vans than large cargo bikes, are becoming more common in the industry and have raised concerns about cargo e-bike bloat, especially in dedicated cycling paths.
It’s too early to say whether European e-bike regulations will actually change, but the fact that key industry voices with the power to influence policy are openly advocating for it suggests that new rules for the European market are a real possibility.
FTC: We use income earning auto affiliate links.More.
China just laid out a plan to roll out over 100,000 ultra-fast EV charging stations by 2027 – and they’ll all be open to the public.
The National Development and Reform Commission’s (NDRC) joint notice, issued on Monday, asks local authorities to put together construction plans for highway service areas and prioritize the ones that see 40% or more usage during holiday travel rushes.
The NDRC notes that China’s ultra-fast EV charging infrastructure needs upgrading as more 800V EVs hit the road. Those high-voltage platforms can handle super-fast charging in as little as 10 to 30 minutes, but only if the charging hardware is up to speed.
China had 31.4 million EVs on the road at the end of 2024 – nearly 9% of the country’s total vehicle fleet. But charging access is still catching up. As of May 2025, there were 14.4 million charging points, or roughly 1 for every 2.2 EVs.
Advertisement – scroll for more content
To keep the grid running smoothly, China wants new chargers to be smart, with dynamic pricing to incentivize off-peak charging and solar and storage to power the charging stations.
To make the business side work, the government is pushing for 10-year leases for charging station operators, and it’s backing the buildout with local government bonds.
The NDRC emphasized that the DC fast chargers built will be open to the public. This is a big deal because a lot of fast chargers in China aren’t. For example, BYD’s new megawatt chargers aren’t open to third-party vehicles.
As of September 2024, China had expanded its charging infrastructure to 11.4 million EV chargers, but only 3.3 million were public.
If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.