Connect with us

Published

on

One-third of the planets orbiting the most common stars across the Milky Way galaxy may hold onto liquid water and possibly harbour life, according to a study based on latest telescope data.

The most common stars in our galaxy are considerably smaller and cooler, sporting just half the mass of the Sun at most. Billions of planets orbit these common dwarf stars.

The analysis, published in the journal Proceedings of the National Academy of Sciences, shows that two-thirds of the planets around these ubiquitous small stars could be roasted by tidal extremes, sterilising them.

However, that leaves one-third of the planets—hundreds of millions across the galaxy—that could be in a goldilocks orbit close enough, and gentle enough, to be possibly habitable.

“I think this result is really important for the next decade of exoplanet research, because eyes are shifting towards this population of stars,” said Sheila Sagear, a doctoral student at the University of Florida (UF) in the US.

“These stars are excellent targets to look for small planets in an orbit where it’s conceivable that water might be liquid and therefore the planet might be habitable,” Sagear said in a statement.

Sagear and UF astronomy professor Sarah Ballard measured the eccentricity of a sample of more than 150 planets around M dwarf stars, which are about the size of Jupiter.

The more oval shaped an orbit, the more eccentric it is. If a planet orbits close enough to its star, at about the distance that Mercury orbits the Sun, an eccentric orbit can subject it to a process known as tidal heating.

As the planet is stretched and deformed by changing gravitational forces on its irregular orbit, friction heats it up. At the extreme end, this could bake the planet, removing all chance for liquid water.

“It’s only for these small stars that the zone of habitability is close enough for these tidal forces to be relevant,” Ballard said.

The researchers used data from NASA’s Kepler telescope, which captures information about exoplanets as they move in front of their host stars.

To measure the planets’ orbits, they focused especially on how long the planets took to move across the face of the stars. Their study also relied on new data from the Gaia telescope, which has measured the distance to billions of stars in the galaxy.

“The distance is really the key piece of information we were missing before that allows us to do this analysis now,” Sagear said.

The team found that stars with multiple planets were the most likely to have the kind of circular orbits that allow them to retain liquid water.

Stars with only one planet were the most likely to see tidal extremes that would sterilise the surface, according to the researchers.

Since one-third of the planets in this small sample had gentle enough orbits to potentially host liquid water, that likely means that the Milky Way has hundreds of millions of promising targets to probe for signs of life outside our solar system, they added.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Gemini North Telescope Spots Interstellar Comet 3I/ATLAS Racing Through Solar System

Published

on

By

Gemini North Telescope Spots Interstellar Comet 3I/ATLAS Racing Through Solar System

A rare interstellar object has been spotted in our solar system, making it the second known object to cross over from outside our cosmic neighbourhood and arrive near our planet. 3I/ATLAS is seen here while about 290 million miles (465 million kilometres) from Earth, when it was journeying inbound on its trip to our vicinity of the solar system. This icy wanderer, first detected by the ATLAS survey on July 1, marks just the third known object from beyond our solar system to be identified, following in the cosmic footsteps of 1I/’Oumuamua and 2I/Borisov.

Massive Interstellar Comet 3I/ATLAS Offers Rare Glimpse Into Alien Planetary System Origins

As per a statement from the National Science Foundation’s NOIRLab, which oversees the International Gemini Observatory, 3I/ATLAS offers a valuable chance to study the building blocks of alien planetary systems. “The sensitivity and scheduling agility of the International Gemini Observatory has provided critical early characterisation of this interstellar wanderer,” mentioned NSF program director Martin Still. At an estimated 12 miles (20 km) in diameter, 3I/ATLAS is much larger than its predecessors, making it easier to analyse.

Images show the comet with a bright, compact coma — the envelope of dust and gas surrounding its core — and other data suggest it could be older than our own solar system. Believed to have originated from the Milky Way’s outer thick disk, 3I/ATLAS may hold clues to the conditions in far-off star systems that once harboured it. Though the discovery is thrilling to some, the comet poses no threat to the Earth as it makes its fleeting visit.

Comet 3I/ATLAS is expected to make its closest pass by the Sun on Oct. 30, when it will fly 130 million miles inside the orbit of Mars. It comes closest to Earth in December, when it is 170 million miles away. Because of its odd orbit, it’s never coming back.

Astronomers around the world are turning toward a piece of an interstellar comet that broke off using a telescope too distant to study, by necessity, as a rare chance to probe the nature of an object from another star and its solar system of origin.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Redmi 15C Price and Specifications Surface Online Via Online Retailer



Adobe Upgrades Firefly Video Model With New Tools and Improved Motion Generation

Continue Reading

Science

NASA Grounds Boeing Starliner Until 2026 After Test Flight Failures

Published

on

By

NASA Grounds Boeing Starliner Until 2026 After Test Flight Failures

The Boeing CST-100 Starliner, a crew capsule for NASA’s Commercial Crew Program, has been plagued by persistent problems. Its first crewed test flight in June 2024 was cut short by technical failures, including helium pressurization leaks and multiple thruster malfunctions. NASA ultimately elected to return Starliner to Earth without its crew, keeping the astronauts aboard the station for safety. With those problems unresolved, NASA now says the capsule will remain grounded until around 2026, and its next mission will likely be uncrewed.

Technical Setbacks and Grounding

According to NASA, During its June 2024 Crew Flight Test, Starliner suffered serious propulsion issues. Multiple helium leaks were detected in the service module’s pressurization system, and five of the capsule’s 28 fine-control thrusters failed during approach to the ISS. NASA and Boeing extended the crew’s station stay while engineers traced the problems to thermal and seal failures in the thruster “doghouse” enclosures.

Ultimately NASA decided to bring Starliner back to Earth empty, concluding the test without its astronauts aboard. Boeing and NASA have since conducted extensive ground testing to validate fixes: engineers at NASA’s White Sands facility are firing thrusters in varied sequences to refine thermal models, and Boeing has added new insulation shunts and thermal barriers in the thruster housings to prevent overheating.

Future of the Starliner Program

Boeing’s delays have reshaped NASA’s Commercial Crew plans. NASA officials say Starliner may even fly one more uncrewed test before carrying astronauts. Starliner development is now billions over budget: its original $4.2 billion contract has grown by roughly $2 billion in extra costs. Meanwhile, SpaceX’s Crew Dragon has flown 11 ISS crew missions and its NASA contract has climbed toward $5 billion amid extra flights added while Starliner lagged. NASA still views Starliner as a critical backup to Dragon and aims to certify it for crew rotations by late 2025 or early 2026.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy S26 Ultra Said to Offer Slightly Larger Screen and Narrower Bezels



Google’s Veo 3 Video Generation AI Model Debuts on Gemini API, Pricing and Features Announced

Related Stories

Continue Reading

Science

Quantum Leap: Scientists Achieve Magic State Distillation on Logical Qubits for the First Time

Published

on

By

Quantum Leap: Scientists Achieve Magic State Distillation on Logical Qubits for the First Time

Scientists have shown the elusive phenomenon of quantum computing that could create the way for fault-tolerant machines, which are much powerful than any of the supercomputers. Magic state distillation is the process which was proposed 20 years ago; however, the use of logical qubits has puzzled scientists since then. It has long been considered crucial for making high-quality resources, called magic states, required to complete the quantum computer’s potential. It has been possible on plains, till now, by which the high-quality magic states are purified so that the complex algorithms can use them. It has not been possible on the logical qubits.

According to Science Daily, the groups of physical qubits sharing the same data are configured for detecting and correcting the errors which frequently disturb the quantum computing operations. However, the scientists with QuEra said that they have demonstrated magic state distillation for the first time on logical qubits. The findings were published on July 14, 2025, in the journal Nature.

Path to Fault-tolerant Quantum Computing

Quantum computers would not be fulfilling their promise without this process. They use qubits as their building blocks and make use of quantum logic, the set of rules and operations that control how quantum information is processed for running the algorithms and processing data. It is challenging to run the complex algorithms together with maintaining amazingly low error rates.

Physical qubits are noisy, which implies that the calculations are often disrupted by factors such as temperature fluctuations and electromagnetic radiation. This is the reason why so much research has taken place on Quantum Error Correction.

With the distillation process, the faithfulness of the magic state increased for any input. This shows that the fault-tolerant magic state distillation has worked in practice. Further, it implies that the quantum computer uses both logical qubits and magic states of higher quality for running non-Clifford gates.

Scientists say that the shift has been observed for a few years. It was challenging to make the quantum computers, with the detection and correction of errors. However, the scientists have successfully done it.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Lava Blaze Dragon India Launch Set for July 25; Design and Amazon Availability Confirmed



Samsung Galaxy S26 Ultra Said to Offer Slightly Larger Screen and Narrower Bezels

Continue Reading

Trending