Connect with us

Published

on

Alphabet’s Google is leading a $36 million (roughly Rs. 297 crore) funding round for Bengaluru-based Pixxel, a satellite-image startup, in the first major investment in the Indian space sector since the government launched its privatisation policy in April.

Pixxel, founded in 2019, is building a constellation of satellites that have the ability to identify mineral deposits or the productivity of crops by analysing the spectral signature of an image.

Miner Rio Tinto and Australian agritech company DataFarming are clients, Pixxel said.

The startup has raised more $71 million (roughly Rs. 585 crore) from investors including Accenture PLC. Pixxel did not specify how much Google had invested or the valuation it reflected.

Google in India did not immediately respond to questions about the investment.

Founder and Chief Executive Awais Ahmed said Pixxel would be “the most valued space tech company in India after this investment”.

That had been rocket and launch provider Skyroot Aerospace, valued at an estimated $163 million (roughly Rs. 1,343 crore), according to Tracxn, which tracks startups.

“We work with satellite data and Google does a lot of work around that with agriculture and environment,” Ahmed told Reuters. “They also have Google Earth … so a combination of that led to them seeing a benefit.”

Pixxel is among the many private companies looking for a fillip since India opened the space sector, encouraging startups to deliver broadband services like Starlink and to power applications like tracking supply chains.

The government announced its private-sector space policy framework in April.

The funding comes at a time when startups globally have struggled to raise funds. Space startups, in particular, have come under pressure after the bankruptcy of Richard Branson’s Virgin Orbit launch company.

Ahmed said the funding would be used to build out its satellite network. Pixxel is readying six satellites for launch next year to add to the three it has now and looking to hire more engineers for its analytics.

Ahmed has said he was inspired to launch a space startup from a visit Elon Musk’s SpaceX as part of a student competition to build a demonstration “hyperloop” transport pod.

He and co-founder Kshitij Khandelwal set out to build an AI model that could use satellite data to predict crop yields, detect illegal mining and track natural disasters.

They launched Pixxel when they concluded existing commercial satellite images did not provide enough detail. Pixxel’s satellites take in and analyse a wide spectrum of light instead of just assigning primary colours to each pixel, a technology known as hyperspectral imaging.

© Thomson Reuters 2023


Google I/O 2023 saw the search giant repeatedly tell us that it cares about AI, alongside the launch of its first foldable phone and Pixel-branded tablet. This year, the company is going to supercharge its apps, services, and Android operating system with AI technology. We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Mysterious Planetary-Mass Objects May Form in Young Star System Clashes

Published

on

By

Mysterious Planetary-Mass Objects May Form in Young Star System Clashes

Free-floating planetary-mass objects have been observed drifting through young star clusters, raising questions about their origins. These objects, with masses around 13 times that of Jupiter, have been identified in large numbers within regions like the Trapezium Cluster in Orion. The discovery of 40 binary planetary-mass objects, referred to as Jupiter-Mass Binary Objects (JuMBOs), has challenged existing theories about their formation. Their presence has led scientists to investigate whether they originate like planets or stars, as neither process can fully explain their characteristics.

Formation Linked to Star System Collisions

According to a study published in Science Advances on February 26, simulations suggest that these objects may form during violent interactions between circumstellar disks surrounding young stars. Deng Hongping of the Shanghai Astronomical Observatory at the Chinese Academy of Sciences told Phys.org that planetary-mass objects do not align with the typical classifications of stars or planets, indicating a distinct formation process linked to young star clusters.

New Insights into Rogue Planetary Objects

As reported, previous theories suggested that free-floating planetary-mass objects were planets ejected from their home systems due to gravitational interactions. However, the discovery of binary JuMBOs contradicts this, as the likelihood of such an event occurring without breaking the pair is low. Alternative explanations, such as them being brown dwarfs, have also been questioned, as binary rates decrease significantly for lower-mass stellar bodies.

Simulations Reveal a Different Mechanism

High-resolution hydrodynamic simulations by the research team demonstrated that circumstellar disk collisions at high speeds could create tidal bridges of gas and dust. These structures collapse into filaments that fragment, forming planetary-mass objects. The study found that 14% of these objects emerge in binary or triplet systems, providing a possible explanation for the large number of JuMBOs observed in Orion.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Asus VU Air Ionizer Series Monitors With Airborne Dust Reduction and 100Hz Refresh Rate Announced



Vanvaas OTT Release Date: Utkarsh Sharma, Nana Patekar’s Film to Premiere on ZEE5

Continue Reading

Science

New Dark Matter Hypothesis Suggests Ionisation Clue in Milky Way’s Core

Published

on

By

New Dark Matter Hypothesis Suggests Ionisation Clue in Milky Way’s Core

Unusual activity at the centre of the Milky Way has raised new questions about dark matter, potentially pointing to a previously overlooked candidate. Researchers suggest that a lightweight, self-annihilating form of dark matter could be influencing cosmic chemistry in ways that have gone unnoticed. This theory proposes that when two of these dark matter particles collide, they annihilate each other, producing electrons and positrons. The presence of these particles in dense gas regions may explain why the Central Molecular Zone (CMZ) contains a significant amount of ionised gas. Scientists argue that this ionisation effect could be an indirect way of detecting dark matter, shifting the focus beyond its gravitational influence.

New Dark Matter Hypothesis

According to a study published in Physical Review Letters, a research team led by Shyam Balaji, Postdoctoral Research Fellow at King’s College London, suggests that dark matter with a mass lower than a proton may be responsible for the high levels of ionisation observed in the CMZ. Speaking to Space.com, Balaji explained that unlike traditional dark matter candidates, which are mainly studied through gravitational interactions, this form of dark matter might be detectable through its impact on the interstellar medium.

Dark Matter and Ionisation

Dark matter is believed to make up 85 percent of the universe’s mass, yet it remains undetectable by conventional methods due to its lack of interaction with light. The research indicates that even if dark matter annihilation is rare, it would be more frequent in galaxy centres where dark matter is expected to be denser. The team suggests that the ionisation observed in the CMZ is too strong to be explained by cosmic rays alone, making dark matter a compelling alternative explanation.

Future Observations and Implications

Balaji highlighted that existing observations do not contradict this hypothesis, and upcoming space missions, including

COSI gamma-ray telescope set to launch in 2027, could provide further evidence. If confirmed, this would open a new avenue for studying dark matter, not just through its gravitational effects but also through its chemical interactions within the galaxy.

Continue Reading

Science

World’s First Modular Quantum Computer Operates at Room Temperature

Published

on

By

World’s First Modular Quantum Computer Operates at Room Temperature

A quantum computer capable of functioning at room temperature has been developed, marking a major advancement in the field. Named Aurora, the system operates using light-based qubits and connects multiple modules through fibre optic cables. This approach aims to address key challenges in quantum computing, including scalability, fault tolerance, and error correction. The technology, designed by Xanadu, a Toronto-based quantum computing company, demonstrates the potential for networked quantum computers that do not require extreme cooling measures.

Photon-Based Quantum Computing at Scale

According to a study published in Nature, Aurora is the first quantum system that operates at scale while being entirely photonic. Traditional quantum computers rely on superconducting qubits that require near-absolute zero temperatures to function effectively. These systems face significant challenges due to heat generation and complex cooling infrastructure. By utilising photonic qubits instead of superconducting ones, Xanadu’s researchers have created a system that integrates seamlessly into existing fibre optic networks.

Networking Smaller Quantum Units

As reported, Christian Weedbrook, CEO and founder of Xanadu, explained that the industry’s primary challenges lie in improving quantum error correction and achieving scalability. The system has been designed with smaller, interconnected modules rather than a single large unit. Speaking to the publication, Darran Milne, CEO of VividQ and an expert in quantum information theory, noted that while dividing a quantum system into multiple components may improve error correction, it has been seen whether this approach will ultimately reduce errors or compound them.

Potential Applications and Future Development

The system integrates 35 photonic chips linked by 13 kilometres of fibre optic cables. Researchers believe this framework could enable large-scale quantum data centres, facilitating applications such as drug discovery simulations and secure quantum cryptography. According to Xanadu, future efforts will focus on minimising optical signal loss in fibre connections to enhance performance.

Continue Reading

Trending