Connect with us

Published

on

Indian Space Research Organisation (ISRO) Chairman S Somnath on Monday said that the Chandrayaan-3- the third edition of India’s mission to the moon- will be launched this July.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

“I am very confident…” said Somnath today on the lunar mission.

The ISRO chairman was speaking after the space agency successfully placed the NVS-01, the first of the second-generation satellite series, into geosynchronous transfer orbit. The Geosynchronous Satellite Launch Vehicle deployed the NVS-01 navigation satellite from the second launch pad at the Satish Dhawan Space Centre (SDC SHAR) in Sriharikota in Andhra Pradesh.

Speaking to ANI, Somanath said, “The lesson is very simple. Learn from the past, and do what is possible with your capacity. Failures may happen. There are a thousand reasons for a rocket to fail. Even today, this mission could have failed. But we have to do what is needed to be done”.

Meanwhile, the Chandraayan-3 mission consists of an indigenous lander module a propulsion module and a rover with an objective of developing and demonstrating new technologies required for Inter planetary missions.

According to ISRO, the three mission objectives of the Chandrayaan-3 are- to demonstrate safe and soft landing on lunar Surface; to demonstrate Rover roving on the moon and to conduct in-situ scientific experiments.

It will be launched by the LVM3 rocket from SDSC SHAR centre in Sriharikota. The propulsion module will carry the lander and rover configuration till 100 km lunar orbit, according to ISRO.

The propulsion module has Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface.

The main function of the Propulsion Module is to carry the Lander Module from launch vehicle injection till final lunar 100 km circular polar orbit and separate the Lander Module from the Propulsion Module.

Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post separation of Lander Module.

The launcher identified for Chandrayaan-3 is GSLV-Mk3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size 170 x 36500 km.

The Chandrayaan is an ongoing series of lunar space exploration programme of the ISRO. Chandrayaan-1, the first lunar probe of ISRO, in 2008-09 found water on the moon. The Chandrayaan-2 was launched in July 2019 and successfully inserted into orbit in August 2019. However, minutes its lander crash-landed on the moon after losing communication with the ground stations.

Earlier in the day, the ISRO Chairman Somnath congratulated the whole ISRO team after the successful launch of NVS-01.

“I would like to congratulate everyone on the outcome. The satellite is placed in the precised orbit. Congratulates to the entire ISRO for making this mission happen,” ISRO Chairman Somnath said in a press conference.

He appreciated the fact that the mission was accomplished after doing the rectifications after suffering a debacle during the last mission.

“This mission GV-F12 came after the debacle that happened in the F-10 mission where there was an issue in the cryogenic stage and the cryogenic engine could not get accomplished. I am very happy that the correction and modification at the cryogenic stage were done and we learnt the lessons to make our cryogenic stage more reliable. I want to specifically congratulate the entire ‘Failure Analysis Committee’ who went through this and made our life much better and also for the Liquid Propulsion System,” he said.

Somnath added, “Today the Navigation Satellite NVS-01 is the second generation of navigation satellite with additional capabilities that we have already brought into the satellite constellation where we make the signals more secure. We made a civilian frequency band L-1 and also introduced our Atomic Clock. And this is one of the five series of satellites with new configurations that are to be launched. I would like to thank all those who worked for this satellite and make the mission a grand success”.

Appreciating the government support, the ISRO Chairman also thanked the authorisation of the GSLV launch despite a failure during the last attempt.

“The confidence of the decision makers, our honourable Prime Minister Narendra Modi and other key functionaries who reviewed it to see that we have done the required work. The Navic Constellation is something very crucial for the nation to have a regional navigation constellation. I take this opportunity to tell you that we are going to make this Navic system fully functional and operational for the benefit of this nation,” he said.

He further said that the satellite is currently in Geosynchronous Transfer Orbit, from where it is the responsibility of the satellite team to correctly place it in the orbit.

Apprising about the future missions of ISRO, Chairman Somnath said, “In the coming months, we are going to launch PSLV as well as GSLV Mark-3. We are also going to launch the test vehicle of the Gaganyan (Man mission). Of course, the launches of further PSLV and SSLV are also in line”

“We are having the next launch of GSLV with a Climate and weather observation satellite called INSAT-3DS, which will be happening soon. And after that, the same rocket is bound to take NISR – India Nasa Synthetic Alergic Radar Satellite as well,” he added.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

A Nearby Supernova May End Dark Matter Search, Claims New Study

Published

on

By

A Nearby Supernova May End Dark Matter Search, Claims New Study

The pursuit of understanding dark matter, which comprises 85 percent of the universe’s mass, could take a significant leap forward with a nearby supernova. Researchers at the University of California, Berkeley, led by Associate Professor of Physics Benjamin Safdi, have theorised that the elusive particle known as the axion might be detected within moments of gamma rays being emitted from such an event. Axions, predicted to emerge during the collapse of a massive star’s core into a neutron star, could transform into gamma rays in the presence of intense magnetic fields, offering a potential breakthrough in physics.

Potential Role of Gamma-Ray Telescopes

The study was published in Physical Review Letters and revealed that the gamma rays produced from axions could confirm the particle’s mass and properties if detected. The Fermi Gamma-ray Space Telescope, currently the only gamma-ray observatory in orbit, would need to be pointed directly at the supernova, with the likelihood of this alignment estimated at only 10 percent. A detection would revolutionise dark matter research, while the absence of gamma rays would constrain the range of axion masses, rendering many existing dark matter experiments redundant.

Challenges in Catching the Event

For detection, the supernova must occur within the Milky Way or its satellite galaxies—an event averaging once every few decades. The last such occurrence, supernova 1987A, lacked sensitive enough gamma-ray equipment. Safdi emphasised the need for preparedness, proposing a constellation of satellites, named GALAXIS, to ensure 24/7 sky coverage.

Axion’s Theoretical Importance

The axion, supported by theories like quantum chromodynamics (QCD) and string theory, bridges gaps in physics, potentially linking gravity with quantum mechanics. Unlike neutrinos, axions could convert into photons in strong magnetic fields, providing unique signals. Laboratory experiments like ABRACADABRA and ALPHA are also probing for axions, but their sensitivity is limited compared to the scenario of a nearby supernova. Safdi expressed urgency, noting that missing such an event could delay axion detection by decades, underscoring the high stakes of this astrophysical endeavour.

Continue Reading

Science

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Published

on

By

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Intelligent extraterrestrial civilisations might be utilising stars as massive interstellar vehicles to explore the galaxy, according to a theory proposed by Clement Vidal, a philosopher at Vrije Universiteit Brussel in Belgium. His research suggests that alien species could potentially accelerate their binary star systems to traverse vast cosmic distances. While such a concept is purely hypothetical and unproven, Vidal’s recent paper, which has not undergone peer review, raises intriguing possibilities about advanced extraterrestrial engineering.

Concept of Moving Star Systems

The study was published in the Journal of the British Interplanetary Society. As per a report by LiveScience, the idea revolves around the notion that alien civilisations, instead of building spacecraft for interstellar travel, might manipulate entire star systems to travel across the galaxy. Vidal highlights binary star systems, particularly those involving neutron stars and smaller companion stars, as ideal candidates. Neutron stars, due to their immense gravitational energy, could serve as anchors for devices designed to propel the system by selectively ejecting stellar material.

Vidal explained in the paper that uneven heating or manipulation of magnetic fields on a star’s surface could cause it to eject material in one direction. This process would create a reactionary thrust, propelling the binary system in the opposite direction. The concept provides a way to travel while preserving planetary ecosystems, making it a theoretically viable method for species reliant on their home systems.

Known Examples with High Velocities

Astronomers have identified hypervelocity stars, such as the pulsars PSR J0610-2100 and PSR J2043+1711, which exhibit high accelerations. While their movements are believed to be natural phenomena, Vidal suggests they could be worth further investigation to rule out potential artificial influences.

This theory adds an unconventional angle to the search for intelligent life, expanding possibilities beyond traditional methods of exploration like searching for signals or probes. The research underscores the importance of considering advanced and unconventional methods aliens might employ to navigate the galaxy.

Continue Reading

Science

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

Published

on

By

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

NASA’s Hubble Space Telescope has provided new insights into the young star FU Orionis, located in the constellation Orion. Observations have uncovered extreme temperatures in the inner region of its accretion disk, challenging current models of stellar accretion. Using Hubble’s Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph, astronomers captured far-ultraviolet and near-ultraviolet spectra, revealing the disk’s inner edge to be unexpectedly hot, with temperatures reaching 16,000 kelvins—almost three times the Sun’s surface temperature.

A Star’s Bright Outburst Explained

First observed in 1936, FU Orionis became a hundred times brighter in months and has remained a unique object of study. Unlike typical T Tauri stars, its accretion disk touches the stellar surface due to instabilities. These are caused by the disk’s large mass, interactions with companion stars, or material falling inwards. Lynne Hillenbrand, a co-author from Caltech, in a statement said that the ultraviolet brightness seen exceeded predictions, revealing a highly dynamic interface between the star and its disk.

Implications for Planet Formation

As per a report by NASA, the study holds significant implications for planetary systems forming around such stars. The report further quoted Adolfo Carvalho, lead author of the study, saying that while distant planets in the disk may experience altered chemical compositions due to outbursts, planets forming close to the star could face disruption or destruction. This revised model provides critical insights into the survival of rocky planets in young star systems, he further added.

Future Investigations on FU Orionis

The research team continues to examine spectral emission lines in the collected data, aiming to map gas movement in the star’s inner regions. Hillenbrand noted that FU Orionis offers a unique opportunity to study the mechanisms at play in eruptive young stars. These findings, published in The Astrophysical Journal Letters, showcase the ongoing value of Hubble’s ultraviolet capabilities in advancing stellar science.

Continue Reading

Trending