Connect with us

Published

on

Scientists have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip developed by researchers at the University of California (UC) San Diego, US, works with a custom smartphone app and currently costs about 80 cents (Rs. 5.6) to make.

The researchers estimate that the cost could be as low as 10 cents (Rs. 0.7) apiece when manufactured at scale.

The technology, described in the journal Scientific Reports, could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities, they said.

It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension, according to the researchers.

“We have created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan Xuan, a Ph.D. student at UC San Diego.

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor at UC San Diego and director of the Digital Health Lab.

Another key advantage of the clip is that it does not need to be calibrated to a cuff, the researchers said.

“This is what distinguishes our device from other blood pressure monitors,” said Wang.

Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading,” Wang said.

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip.

That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force.

The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies.

By looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip.

An algorithm converts this information into systolic and diastolic blood pressure readings.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author Alison Moore, from UC San Diego School of Medicine.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Published

on

By

Astronomers Discover 3I/ATLAS, Largest Interstellar Comet Yet Detected

Astronomers have discovered the third interstellar comet to pass through our solar system. Named 3I/ATLAS (initially A11pl3Z), it was first spotted July 1 by the ATLAS telescope in Chile and confirmed the same day. Pre-discovery images show it in the sky as far back as mid-June. The object is racing toward the inner system at roughly 150,000 miles per hour on a near-straight trajectory, too fast for the Sun to capture. Estimates suggest its nucleus may be 10–20 km across. Now inside Jupiter’s orbit, 3I/ATLAS will swing closest to the Sun in October and should remain observable into late 2025.

Discovery and Classification

According to NASA, in early July the ATLAS survey telescope in Chile spotted a faint moving object first called A11pl3Z, and the IAU’s Minor Planet Center confirmed the next day that it was an interstellar visitor. The object was officially named 3I/ATLAS and noted as likely the largest interstellar body yet detected. At first it appeared to be an ordinary near-Earth asteroid, but precise orbit measurements showed it speeding at ~150,000 mph – far too fast for the Sun to capture. Astronomers estimate 3I/ATLAS spans roughly 10–20 km across. Signs of cometary activity – a faint coma and short tail – have emerged, earning it the additional comet designation C/2025 N1 (ATLAS).

Studying a Pristine Comet

3I/ATLAS was spotted well before its closest approach, giving astronomers time to prepare detailed observations. It will pass within about 1.4 AU of the Sun in late October. Importantly, researchers can study it while it is still a pristine frozen relic before solar heating alters it. As Pamela Gay notes, discovering the object on its inbound leg leaves “ample time” to analyze its trajectory. Astronomers are now racing to obtain spectra and images – as Chris Lintott warns, the comet will be “baked” by sunlight as it nears perihelion.

Determining its composition and activity is considered “a rare chance” to learn how planets form in other star systems. With new facilities like the Vera C. Rubin Observatory coming online, researchers expect more such visitors in the years ahead. 3I/ATLAS offers a rare chance to study material from another star system.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Science

NASA’s New Horizons Proves Deep-Space Navigation via Stellar Parallax

Published

on

By

NASA's New Horizons Proves Deep-Space Navigation via Stellar Parallax

NASA’s New Horizons spacecraft carried out an unprecedented deep-space star navigation test while 438 million miles from Earth. Using its long-range camera in April 2020, it captured images of Proxima Centauri and Wolf 359, which appeared slightly shifted in the sky compared to Earth’s view – a striking demonstration of stellar parallax. It was the first-ever demonstration of deep-space stellar navigation. By comparing these images to Earth-based observations and a 3D star chart, scientists calculated New Horizons’ position to within about 4.1 million miles, only about 26 inches across the United States.

Stellar Parallax Test

According to the paper describing the results, accepted for publication in The Astronomical Journal, New Horizons’ camera imaged Proxima Centauri (4.2 light-years away) and Wolf 359 (7.86 light-years) on April 23, 2020. From the spacecraft’s distant vantage point, the two stars appear in different positions than seen from Earth – the essence of stellar parallax. By comparing those images with Earth-based data and a three-dimensional map of nearby stars, the team worked out the probe’s location to within about 4.1 million miles.

As lead author Tod Lauer explained, “Taking simultaneous Earth/Spacecraft images we hoped would make the concept of stellar parallaxes instantly and vividly clear”. He added, “It’s one thing to know something, but another to say ‘Hey, look! This really works!’”.

New Horizons and Future Missions

New Horizons, the fifth spacecraft to leave Earth and reach interstellar space, flew past Pluto and its moon Charon in 2015, sending home the first close-up images of those distant icy worlds. Now on an extended mission, the probe is studying the heliosphere.

New Horizons’ principal investigator Alan Stern called the parallax test “a pioneering interstellar navigation demonstration” that shows a spacecraft can use onboard cameras “to find its way among the stars”, in a statement. He also noted it “could be highly useful for future deep space missions in the far reaches of the Solar System and in interstellar space”

Continue Reading

Science

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Published

on

By

AI Designs Ocean Gliders Inspired by Sea Creatures to Boost Underwater Research Efficiency

Marine animals like fish and seals have long inspired ocean engineers due to their fluid, energy-efficient movements. Now, researchers are turning to these sea animals to create a new class of underwater gliders that requires very little energy, according to a team led by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison. They used artificial intelligence to design forms that slide through the water with less resistance, making long-term ocean exploration more efficient. These gliders, fabricated via 3D printing, promise better data collection on currents, salt levels, and climate impacts.

AI-Powered 3D Designs Create Energy-Efficient Underwater Gliders Inspired by Marine Life Forms

As per a study published on the arXiv preprint server, the team used machine learning to create and simulate numerous novel 3D glider shapes. By comparing traditional models—like submarines and sharks—with digitally altered versions, their algorithm learnt how different designs behaved at various “angles-of-attack.” A neural network then evaluated the lift-to-drag ratio of each shape, identifying those most likely to glide efficiently through water. These shapes were then fabricated using lightweight materials that minimised energy use.

In tests, two AI-generated prototypes—one shaped like a two-winged plane and the other like a four-finned flatfish—were built and tested both in wind tunnels and underwater. Key hardware was integrated with the gliders, including buoyancy control by a pump and a mass shifter to move the angle during displacements. The new gliders, with better shapes and lift-to-drag ratios, could travel farther on less power than traditional torpedo-shaped types.

The team added that what they are doing not only makes new types of designs possible but also reduces design times and cuts the cost since it doesn’t require physical prototyping. “This high degree of shape diversity hasn’t been investigated before,” Peter Yichen Chen, an MIT postdoc and co-lead author on the project, mentioned. He also noted that their AI pipeline allows testing forms that would be “very taxing” for humans to manually design.

The future plans are to produce slimmer and more manoeuvrable gliders and to improve the AI system with more configurable options. Intelligent bioinspired vehicles like these, the researchers say, will be essential in studying dynamic ocean environments that are changing quickly with the intensifying demands of industrial activity, ultimately offering more flexible and efficient ways for us to explore Earth’s last frontier.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Observations Give Forgotten Globular Cluster Its Moment to Shine



Narivetta OTT Release Date: When and Where to Watch Tovino Thomas Starrer Political Drama Online?

Continue Reading

Trending