Connect with us

Published

on

Elon Musk’s Neuralink received approval last week from the US Food and Drug Administration to conduct human clinical trials, which one former FDA official called “really a big deal.” I do not disagree, but I am skeptical that this technology will “change everything.” Not every profound technological advance has broad social and economic implications.

With Neuralink’s device, a robot surgically inserts a device into the brain that can then decode some brain activity and connect the brain signals to computers and other machines. A person paralyzed from the neck down, for example, could use the interface to manipulate her physical environment, as well as to write and communicate.

This would indeed be a breakthrough — for people with paralysis or traumatic brain injuries. For others, I am not so sure. For purposes of argument, as there are many companies working in this space, assume this technology works as advertised. Who exactly will want to use it?

One fear is that the brain-machine connections will be expensive and that only the wealthy will be able to afford them. These people will become a new class of “super-thinkers,” lording over us with their superior intellects.

I do not think that this scenario is likely. If I were offered $100 million for a permanent brain-computer connection, I would not accept it, if only because of fear of side effects and possible neurological damage. And I would want to know for sure that the nexus of control goes from me to the computer, not vice versa.

Besides, there are other ways of augmenting my intelligence with computers, most notably the recent AI innovations. It is true that I can think faster than I can speak or type, but — I’m just not in that much of a hurry. I would rather learn how to type on my phone as fast as a teenager does.

A related vision of direct brain-computer interface is that computers will be able to rapidly inject useful knowledge into our brains. Imagine going to bed, turning on your brain device, and waking up knowing Chinese. Sounds amazing — yet if that were possible, so would all sorts of other scenarios, not all of them benign, where a computer can alter or control our brains.

I also view this scenario as remote — unlike using your brain to manipulate objects, it seems true science fiction. Current technologies read brain signals but do not control them.

Another vision for this technology is that the owners of computers will want to “rent out” the powers of human brains, much the way companies rent out space today in the cloud. Software programs are not good at some skills, such as identifying unacceptable speech or images. In this scenario, the connected brains come largely from low-wage laborers, just as both social media companies and OpenAI have used low-wage labor in Kenya to grade the quality of output or to help make content decisions.

Those investments may be good for raising the wages of those people. Many observers may object, however, that a new and more insidious class distinction will have been created — between those who have to hook up to machines to make a living, and those who do not.

Might there be scenarios where higher-wage workers wish to be hooked up to the machine? Wouldn’t it be helpful for a spy or a corporate negotiator to receive computer intelligence in real-time while making decisions? Would professional sports allow such brain-computer interfaces? They might be useful in telling a baseball player when to swing and when not to.

The more I ponder these options, the more skeptical I become about large-scale uses of brain-computer interfaces for the non-disabled. Artificial intelligence has been progressing at an amazing pace, and it doesn’t require any intrusion into our bodies, much less our brains. There are always earplugs and some future version of Google Glass.

The main advantage of the direct brain-computer interface seems to be speed. But extreme speed is important in only a limited class of circumstances, many of them competitions and zero-sum endeavors, such as sports and games.

Of course, companies such as Neuralink may prove me wrong. But for the moment I am keeping my bets on artificial intelligence and large language models, which sit a comfortable few inches away from me as I write this. 

© 2023 Bloomberg LP


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Dinosaurs were thriving before asteroid impact, study finds

Published

on

By

Dinosaurs were thriving before asteroid impact, study finds

Scientists say that dinosaurs weren’t doomed when an asteroid hit Earth. Fossil unearthings before the asteroid collision, at the end of the Cretaceous epoch, show that dinosaurs were losing variety and numbers. At first, some scientists thought this alteration showed dinosaurs were headed toward extinction even before the fatal asteroid incident. Nevertheless, this concept has long been argumentative, with other researchers insisting that dinosaur diversity was doing just fine at the time of their loss of life.

Challenging the Long-Held Narrative

According to a report by Live Science, the visible rarity of dinosaurs before their extinction may merely be due to a low fossil record. Emphasizsng four families—that is, the Ankylosauridae, Ceratopsidae, Hadrosauridae, and Tyrannosauridae—the studies of the scientists reveal records of approximately 8,000 fossils from North America dating to the Campanian age (83.6 million to 72.1 million years ago) and Maastrichtian age (72.1 million to 66 million years ago).

Th range of dinosaurs peaked 76 million years ago and started to shrink after the asteroid collision wiped off the nonavian dinosaurs. This drift was more pronounced than in the 6 million years before the mass annihilation, with the number of fossils from all four families reducing in the geological record.

Fossil Records and Statistical Models Paint a New Picture

Vegetation either covered or obscured geological outcrops from the Maastrichtian period in North America. Specifically, rock from this time that might contain dinosaur fossils was not easily accessible to the researchers who were searching for them. The study’s encapsulation might also have worldwide branching due to North America being home to half of the familiar fossils from this age.

A Catastrophic Exception, Not a Gradual End

There is no evidence of environmental conditions or other aspects that would specifically elaborate the reason of this decline, the researchers landed. All of the dinosaur broods were far-flung, as per models come into being developed by the researchers — and consequently at low risk for extinction, barring a catastrophic event such as the asteroid effect.

In the group of 8,000 fossil records evaluated, the team found that ceratopsians—a group that includes horned dinosaurs like Triceratops and its relatives — were the most common; most likely, they inhabited plain regions that were most conducive to preservation during the Maastrichtian era.

Continue Reading

Science

Scientists Revive Dire Wolves Using Ancient DNA and Modern Gene Editing

Published

on

By

Scientists Revive Dire Wolves Using Ancient DNA and Modern Gene Editing

Three live dire wolf pups have been born using reconstructed DNA. The extinct species had last roamed North America around 12,500 years ago. The milestone was reached by a Dallas-based biotech firm that focuses on genetic conservation. Ancient DNA samples from fossilised remains were analysed. Modern gene-editing tools were used to mimic key characteristics of the extinct predator. These pups were brought to life by implanting modified embryos into domestic dog surrogates. The young wolves have been named Romulus, Remus and Khaleesi.

Ancient DNA edited in lab to recreate species

According to a study shared by Colossal Biosciences, DNA samples had been collected from two ancient dire wolf fossils. One was a 13,000-year-old tooth, while the other was a 72,000-year-old skull fragment. These fragments were compared to modern wolf relatives and grey wolves were chosen for DNA alteration because of their evolutionary proximity. Gene sequences that were found only in dire wolves were isolated. These were introduced into the DNA of grey wolves through targeted editing.

Cloning technique used to implant embryos

The altered genetic material was inserted into grey wolf egg cells after removing their original nuclei. These prepared cells were placed inside domestic dogs. Each surrogate received multiple embryos. Interestingly, only one embryo survived in each of the first two dogs. Both gave birth by caesarean section, while the third pup was born in a second round of implantation.

Physical traits match fossil record

The new pups have been observed to develop features consistent with known dire wolf fossils. Thick white coats, larger teeth and body structure have been reported. These results came from identifying changes in 14 genes. The gene edits were introduced using CRISPR technology.

The same company had previously cloned red wolves. The team had also created “woolly mice” as part of a mammoth revival effort. The successful dire wolf birth marks a new phase in gene-driven species restoration.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Redmi Watch Move India Launch Set for April 21; Design, Key Features Teased



Vivo X200s Colour Options Teased; Tipped to Get 6,200mAh Battery, IP68/IP69 Rating

Continue Reading

Science

Panama Tree Shocks Scientists With Lightning-Based Defense

Published

on

By

Panama Tree Shocks Scientists With Lightning-Based Defense

Lightning is commonly considered a sign of disaster in the forest, as lightning kills or damages trees. On the lowlands of Panama, the tonka bean tree (Dipteryx oleifera) might have evolved to capitalize on this natural occurrence. New research suggests that lightning strikes could help the tonka bean tree (Dipteryx oleifera). According to Live Science research, these trees not only survive these electrical interactions unharmed, but the lightning also harms their competitors and the parasitic vines that cling to the tonka bean plants.

The researchers published their findings on March 26 in the journal New Phytologist. Lightning is a major cause of tree mortality in tropical forests, particularly among the largest and oldest trees, which play important roles in carbon storage and biodiversity.

Lightning as a Canopy Weapon

On average, each lightning hit destroyed over 2.4 tons (2 metric tons) of adjacent tree biomass and approximately 80 percent of the lianas (parasitic vines) that plagued the tonka bean canopy. As per Gora’s assumption, the key to these trees’ lightning resistance comes from their physical structure.

A few studies describe the tree as having strong internal conductivity, letting lightning current flow through without building up damaging heat like a well-insulated wire. Because they tend to grow large — up to 130 feet (40 meters)—and live for centuries, a single tonka bean tree is estimated to be struck at least five times after reaching maturity. Each strike helps to clear out vines and competitors, opening up the canopy to help it thrive.

Ecological Impact and Evolutionary Marvel

Gregory Moore, a horticulturalist from the University of Melbourne who was not involved in the study, thinks the results will apply to other species. “The sort of work could also apply to other tree-dominated plant communities, such as woodlands or low woodlands where trees are widely separated, so it’s nothing like a tropical forest,” he said, adding that other tall trees are also possible targets of lightning strikes.

More Than Just a Tree

“We have long known that some trees can withstand multiple lightning strikes,” Moore said, noting that some tall trees survive Australian bushfires and grow up towering over their neighbors, making them prime targets for lightning strikes. “They are often referred to as stags because the top of the crown has been blown out, but they can survive for centuries after being hit by lightning,” he added.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Google NotebookLM App Is Coming Soon, Company Confirms



EU Decisions on Alleged Apple, Meta Tech Rule Breaches Due in Coming Weeks, Antitrust Chief Says

Continue Reading

Trending