Connect with us

Published

on

Elon Musk‘s brain implant startup Neuralink, which was valued at close to $2 billion (roughly Rs. 16,500 crore) in a private fundraising round two years ago, is now worth around $5 billion (roughly Rs. 41,300 crore) based on privately executed stock trades described to Reuters by five sources with knowledge of the matter.

Some purchases by bullish investors boosted the valuation in recent months, ahead of Neuralink’s May 25 announcement that U.S. regulators had approved a human trial on its brain chip, the sources said.

Experts have said it could take several years for Neuralink to secure commercial use clearance. Kip Ludwig, former program director for neural engineering at the U.S. National Institutes of Health (NIH), said he “optimistically” expected Neuralink to take at least 10 more years to commercialize its brain implant. The company also faces other challenges that include federal probes into its handling of animal research.

Following the trial’s approval, however, Neuralink shares were marketed privately to investors in recent days at a $7 billion (roughly Rs. 57,900 crore) valuation, equivalent to $55 (roughly Rs. 4,500) per share, according to an email seen by Reuters. Reuters could not establish whether the seller found buyers for that price. The email cited the U.S. Food and Drug Administration’s (FDA) approval of the clinical trial as grounds for the deal being “sweeter.”

Neuralink executives and Musk did not respond to requests for comment.

Musk has expressed grand ambitions for Neuralink, saying its chip would allow healthy and disabled people alike to pop into neighbourhood facilities for speedy surgical insertions of devices to treat obesity, autism, depression and schizophrenia. He even sees them being used for web-surfing and telepathy. A Neuralink executive recently gave more modest short-term objectives, such as helping paralyzed patients communicate through computerized text without typing.

The stock transactions at a valuation of around $5 billion (roughly Rs. 41,300 crore) have been carried out by shareholders such as employees and the company’s early backers, rather than Neuralink selling new shares to investors. Such so-called secondary trades are an imperfect gauge of a company’s value; their volume is thin and they lack the wider market consensus of a fundraising round or initial public offering (IPO).

Neuralink’s valuation jump in secondary trades is in sharp contrast to other startups. About 85percent of pre-IPO companies are currently valued in secondary trades at an average discount of 47 percent to their last funding round, according to data provider Caplight.

In Neuralink’s last known fundraising in 2021, it raised $205 million (roughly Rs. 1,700 crore) at an approximately $2 billion (roughly Rs. 16,500 crore) valuation, according to data provider Pitchbook.

Many of the recent stock sales have been to relatively small investors, who typically focus more on getting a slice of a company owned by Musk than scrutinizing its valuation. The maximum amount sought for the Neuralink shares marketed for sale at a $7 billion (roughly Rs. 57,900 crore) valuation was just $500,000, according to the email seen by Reuters.

Sim Desai, chief executive of Hiive, an online platform where the shares are traded, said demand for Neuralink stock has been “tremendous.” He pegged the valuation that buyers are willing to pay at around $4.5 billion (roughly Rs. 37,200 crore).

Some biomedical experts are skeptical. Arun Sridhar, a scientist and entrepreneur who specializes in neuromodulation, called Neuralink’s valuation “bonkers” based on how early the brain implant is in its clinical development.

“A study to assess safety and tolerability is in no shape or form valid to justify a $5 billion (roughly Rs. 41,300 crore) valuation,” said Sridhar, who helped launch Galvani Bioelectronics, a developer of implants backed by GSK Plc and Alphabet Inc’s Verily Life Sciences. Galvani is not a competitor of Neuralink because its implants under development will be installed in an artery to the spleen to help treat rheumatoid arthritis, rather than the brain.

Investigations

The FDA initially rejected Neuralink’s request for a human trial last year, citing safety reasons, Reuters has reported. Even after securing approval, the company faces several challenges.

Neuralink has come under scrutiny from U.S. lawmakers after Reuters reported in May that its animal-research board may have violated conflict-of-interest regulations. Neuralink employees who sat on that board, which oversees the welfare of the animals that were being tested, also stood to benefit from the implant’s quick development. Neuralink stock that some of the employees hold has jumped around 150 percent in value in just two years, based on the secondary trades.

The law enforcement arm of the U.S. Department of Agriculture has been investigating Neuralink for potential animal-welfare violations. Neuralink staff told Reuters last year that the company was rushing and botching surgeries on monkeys, pigs and sheep, resulting in far more animal deaths than necessary, as Musk pressured staff to receive FDA approval.

The Department of Transportation is separately probing whether Neuralink illegally transported dangerous pathogens on chips removed from monkey brains without proper containment measures.

Neither Musk nor Neuralink have responded to multiple requests for comment on the probes or the Reuters reports.

© Thomson Reuters 2023
 


The Motorola Edge 40 recently made its debut in the country as the successor to the Edge 30 that was launched last year. Should you buy this phone instead of the Nothing Phone 1 or the Realme Pro+? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Data Empowers Global Response to Rising Sea Levels

Published

on

By

NASA Data Empowers Global Response to Rising Sea Levels

Coastal communities around the world are confronting the realities of rising sea levels, which threaten both daily life and essential infrastructure. In response, NASA has collaborated with agencies such as the US Department of Defense, the World Bank, and the United Nations to deliver detailed data on global sea level rise. This information, accessible through NASA’s Earth Information Center, is intended to aid in the preparation and planning for coastal impacts expected through the year 2150.

As per a report by NASA, the centre offers projections of future sea levels and potential regional flooding over the next 30 years. The report highlights that this resource combines data from NASA’s ongoing satellite monitoring with computer modelling of ice sheet dynamics and ocean behaviour, alongside assessments from global authorities like the Intergovernmental Panel on Climate Change. These tools are designed to equip communities with accurate data on which they can base crucial coastal infrastructure and climate resilience plans.

Global Applications of NASA’s Data

Global institutions are using NASA’s sea level data to shape policies and implement adaptive strategies in vulnerable regions, the report mentioned. The World Bank, for example, integrates this information into Climate Risk Profiles for countries most susceptible to rising sea levels. Similarly, the U.S. Department of Defense leverages the data to foresee and mitigate the impacts on its coastal facilities, while the U.S. Department of State uses the information in disaster preparedness and adaptation planning for its international allies, the report further adds.

Selwin Hart, Assistant Secretary-General and special adviser to the United Nations on climate action, described the data as “a critical resource for protecting lives and livelihoods,” emphasising the disparity in impacts between a global warming limit of 1.5 degrees Celsius and current policy projections. This data, he noted, underscores the urgent need for action in vulnerable coastal areas.

Accelerating Rise of Global Sea Levels

The current rate of sea level rise has been shown to increase significantly, with nearly all coastal countries observing heightened sea levels from 1970 to 2023. According to Ben Hamlington, head of NASA’s sea level change team, the rise in sea levels is occurring at an accelerated pace, with average increases nearly doubling over the past three decades. Notably, NASA’s projections indicate that Pacific Island nations will see at least a 15-centimetre rise by 2050, accompanied by a marked increase in high-tide flooding.

The new data platform, as explained by Nadya Vinogradova Shiffer, director of NASA’s ocean physics programme, allows communities worldwide to anticipate future flooding scenarios.

Continue Reading

Science

Ancient pebbles in Israel hint at the earliest form of wheel technology

Published

on

By

Ancient pebbles in Israel hint at the earliest form of wheel technology

Archaeologists in Israel have uncovered doughnut-shaped pebbles that may be among the earliest forms of wheel-like technology. Found at the Nahal Ein Gev II site in northern Israel, these 12,000-year-old limestone pebbles feature central holes and are thought to have been used as spindle whorls—a tool for spinning fibres like flax and wool.

Talia Yashuv, a graduate student and co-author of the study at the Hebrew University of Jerusalem’s Institute of Archaeology, told LiveScience that these ancient artefacts suggest early experimentation with rotational tools that could have laid the foundation for later advancements like the potter’s wheel and the cart wheel. This discovery was published in PLOS One on November 13, offering a glimpse into pre-agricultural technology in the region.

The roughly 100 perforated pebbles were analysed by Yashuv and Leore Grosman, a professor of prehistoric archaeology at the same institute. After scanning each pebble in 3D, the team produced detailed models to assess their potential uses. Most of the pebbles were thought unlikely to serve as fishing weights or beads due to their size and shape, which diverge from artefacts used in similar periods. Instead, the team recreated spindle whorls from the scanned models, which traditional craft expert Yonit Crystal used to spin flax and wool. While the flax was easier to handle, the replicas demonstrated that the pebbles were likely effective as spindle whorls, supporting early textile production, the study noted.

Implications of the Findings

The findings indicate that these spindle whorls could mark a key point in technological evolution, potentially linked to new methods of storage and survival. Alex Joffe, a director at the Association for the Study of the Middle East and Africa and experienced archaeologist, told LiveScience that the possibility that these artefacts could have enabled innovations like bags or fishing lines. Yorke Rowan, an archaeology professor at the University of Chicago, echoed this view, noting that the analysis represents a “critical turning point” in early technology.

A Continuing Debate

While these pebbles may represent one of the earliest uses of wheel-like forms, Carole Cheval, an expert in prehistoric textiles at CEPAM in France, told that the publication that she observed that similar objects have been found in other regions, possibly from earlier periods. This adds another layer to understanding the origins of rotational technology, highlighting the ongoing exploration of ancient human innovation.

Continue Reading

Science

Binar satellites re-enter early due to high solar activity

Published

on

By

Binar satellites re-enter early due to high solar activity

An increase in solar activity has resulted in the early re-entry of three CubeSats from Curtin University’s Binar Space Program. These small satellites, which operated at low Earth orbit, were designed to last for at least six months. However, due to intensified solar conditions, they were destroyed within two months, significantly shortening their scientific mission.

CubeSats like Binar-2, 3 and 4 are particularly vulnerable to space weather impacts because they lack propulsion systems that could counteract the heightened atmospheric drag caused by solar activity. The satellite programme had launched Binar-1 in 2021 during relatively low solar activity, which allowed it to complete a full year in orbit.

The Science Behind Solar Activity

As per a report by The Conversation, solar activity, which includes phenomena such as solar flares, sunspots and solar wind, follows an 11-year cycle driven by the Sun’s magnetic field. Known as “solar cycle 25,” this phase has shown unexpected activity levels, currently over 1.5 times higher than projected. This has impacted not only the Binar satellites but also large-scale operations like the Starlink constellation and the International Space Station, both of which require continuous adjustments to counter increased drag.

Impact of Space Weather on Satellites and Earth

Increased solar activity generates higher levels of ionising radiation and charged particles. This can damage sensitive satellite electronics, disrupt radio communications and increase radiation exposure for astronauts. The intensified solar conditions have also expanded the Earth’s atmosphere outward, leading to increased drag for satellites in low Earth orbit. This affects many smaller satellites, which lack the capability to adjust their altitude.

The recent solar activity has also created more visible auroras, with these atmospheric light displays appearing closer to the equator than seen in decades.

Future Considerations for Space Missions

Despite current challenges, solar activity is expected to decline gradually, reaching a minimum by 2030. This pause may offer more favourable conditions for future missions. In response to current conditions, work has commenced on future Binar missions, which may benefit from a more predictable space weather environment.

Continue Reading

Trending