Connect with us

Published

on

One-third of the planets orbiting the most common stars across the Milky Way galaxy may hold onto liquid water and possibly harbour life, according to a study based on latest telescope data.

The most common stars in our galaxy are considerably smaller and cooler, sporting just half the mass of the Sun at most. Billions of planets orbit these common dwarf stars.

The analysis, published in the journal Proceedings of the National Academy of Sciences, shows that two-thirds of the planets around these ubiquitous small stars could be roasted by tidal extremes, sterilising them.

However, that leaves one-third of the planets—hundreds of millions across the galaxy—that could be in a goldilocks orbit close enough, and gentle enough, to be possibly habitable.

“I think this result is really important for the next decade of exoplanet research, because eyes are shifting towards this population of stars,” said Sheila Sagear, a doctoral student at the University of Florida (UF) in the US.

“These stars are excellent targets to look for small planets in an orbit where it’s conceivable that water might be liquid and therefore the planet might be habitable,” Sagear said in a statement.

Sagear and UF astronomy professor Sarah Ballard measured the eccentricity of a sample of more than 150 planets around M dwarf stars, which are about the size of Jupiter.

The more oval shaped an orbit, the more eccentric it is. If a planet orbits close enough to its star, at about the distance that Mercury orbits the Sun, an eccentric orbit can subject it to a process known as tidal heating.

As the planet is stretched and deformed by changing gravitational forces on its irregular orbit, friction heats it up. At the extreme end, this could bake the planet, removing all chance for liquid water.

“It’s only for these small stars that the zone of habitability is close enough for these tidal forces to be relevant,” Ballard said.

The researchers used data from NASA’s Kepler telescope, which captures information about exoplanets as they move in front of their host stars.

To measure the planets’ orbits, they focused especially on how long the planets took to move across the face of the stars. Their study also relied on new data from the Gaia telescope, which has measured the distance to billions of stars in the galaxy.

“The distance is really the key piece of information we were missing before that allows us to do this analysis now,” Sagear said.

The team found that stars with multiple planets were the most likely to have the kind of circular orbits that allow them to retain liquid water.

Stars with only one planet were the most likely to see tidal extremes that would sterilise the surface, according to the researchers.

Since one-third of the planets in this small sample had gentle enough orbits to potentially host liquid water, that likely means that the Milky Way has hundreds of millions of promising targets to probe for signs of life outside our solar system, they added.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Moon’s Deepest Canyons Formed in Minutes by High-Speed Impact Debris

Published

on

By

Moon’s Deepest Canyons Formed in Minutes by High-Speed Impact Debris

Two colossal canyons on the moon, both deeper than the Grand Canyon, were formed in under ten minutes by surges of high-speed rock debris, as per reports. These valleys, named Vallis Schrödinger and Vallis Planck, extend for 270 kilometres and 280 kilometres, respectively, with depths of up to 3.5 kilometres. Comparatively, the Grand Canyon reaches a maximum depth of approximately 1.9 kilometres. The canyons are located near the Schrödinger impact basin in the lunar south polar region, an area marked by towering mountains and deep craters.

Impact that shaped the lunar landscape

According to the study published in Nature Communications, these canyons are part of several valleys that formed from the debris ejected during the impact that created Schrödinger basin, a 320-kilometre-wide crater formed around 3.81 billion years ago. The basin is positioned on the outer edge of the South Pole–Aitken basin, the moon’s largest and oldest remaining impact structure, which dates back more than 4.2 billion years.

Unprecedented energy levels behind the canyons

As per findings, rocky debris from the impact travelled at speeds ranging between 3,420 and 4,600 kilometres per hour. In comparison, a bullet from a 9mm handgun reaches speeds of about 2,200 kilometres per hour. The force required to carve these canyons is estimated to have been over 130 times greater than the total energy stored in the current global nuclear arsenal.

Key insights for future lunar exploration

Speaking to Space.com, David Kring, a geologist at the Lunar and Planetary Institute, highlighted that unlike the Grand Canyon, which was shaped by water over millions of years, these lunar canyons were formed in a matter of minutes by rock flows. The distribution of impact debris also suggests that astronauts landing near the South Pole–Aitken basin may find better access to some of the moon’s oldest geological samples. These insights contribute to ongoing research on potential landing sites for future lunar missions.

Continue Reading

Science

NASA Looks for Private Partners To Revive VIPER Moon Rover Mission

Published

on

By

NASA Looks for Private Partners To Revive VIPER Moon Rover Mission

NASA is inviting U.S. companies to collaborate on the Volatiles Investigating Polar Exploration Rover (VIPER), a mission initially halted due to budget constraints. Designed to search for water ice near the lunar south pole, VIPER was originally planned as a $450 million project. The agency had cancelled the mission in July 2024, citing cost-saving measures. Now, a fresh call has been made to private firms willing to take on the challenge of delivering the rover to the Moon, conducting exploration, and sharing scientific data. A final decision is expected in the coming months.

VIPER’s Role in Lunar Exploration

According to NASA’s announcement, VIPER was designed to support Artemis program objectives by locating potential water ice deposits. These resources are crucial for future human missions and lunar surface operations. Initially set to launch aboard the Griffin lander by Astrobotic Technology, the mission was shelved before its deployment. Following interest from private firms, NASA has decided to explore new avenues for its deployment while ensuring that the scientific goals remain intact.

Proposals and Selection Process

NASA officials have confirmed that responses from interested companies must be submitted by February 20, 2025. Selected candidates will be invited to provide more detailed proposals, with final selections anticipated by mid-year. The agency has clarified that while VIPER will be handed over in its current state, modifications involving dismantling its instruments for use on other spacecraft will not be permitted. Companies will be required to manage landing operations, conduct scientific research, and ensure data dissemination as part of the agreement.

Potential Benefits for Private Firms

In a statement in an official press release by NASA, Joel Kearns, Deputy Associate Administrator for Exploration in NASA’s Science Mission Directorate, stated that the partnership would provide significant opportunities for private firms looking to advance their lunar surface capabilities. He emphasised that VIPER’s deployment could mark a critical step toward commercial involvement in lunar exploration, reinforcing NASA’s commitment to fostering public-private collaborations.

Future of Lunar Resource Exploration

As NASA continues to push for sustainable lunar exploration, the integration of private-sector capabilities is seen as a key element in reducing costs and expanding mission possibilities. With lunar resource utilisation playing a major role in future space endeavours, the agency remains focused on ensuring that scientific objectives are met while advancing commercial lunar operations. The final selection of partners for VIPER is expected to set the stage for upcoming exploration missions and resource prospecting efforts on the Moon.

Continue Reading

Science

Microplastics Found in Human Brain Tissue, Study Shows Rising Levels

Published

on

By

Microplastics Found in Human Brain Tissue, Study Shows Rising Levels

Tiny plastic particles have been found in human brain tissue, raising concerns over their impact on health. Scientists have detected a significant increase in microplastics and nanoplastics (MNPs) in the brain over the past decades. The particles, commonly present in air, water, and food, have now been identified within human tissue, challenging previous assumptions about the brain’s protective barriers. Researchers are working to understand the long-term consequences of this plastic infiltration.

Rising Plastic Levels in Brain Tissue

According to the study published in Nature Medicine, 91 brain samples collected from individuals who died between 1997 and 2024 were analysed. Reports indicate a 50 percent increase in MNP concentrations from 2016 to 2024, with median levels rising from 3,345 micrograms per gram to 4,917 micrograms per gram. Andrew West, a neuroscientist at Duke University, told Science News that the sheer quantity of plastic detected was unexpected, stating that he didn’t believe it until he saw all the data.

Unexpected Particle Shapes and Sources

Findings suggest that the plastic particles are not uniform. Many were thin, sharp fragments rather than the engineered beads often studied in labs. Richard Thompson, a microplastic pollution expert at the University of Plymouth, told Science News that these plastics originate from everyday products such as grocery bags and bottles. Polystyrene, frequently used in medical and food industries, was found in lower amounts compared to polyethylene.

Higher MNP levels were found in the brains of 12 individuals diagnosed with dementia, but researchers have not confirmed a direct causal link. Some scientists speculate that neurological changes associated with dementia may increase plastic accumulation. Phoebe Stapleton, a toxicologist at Rutgers University, told Nature Medicine that further research is required to understand the biological impact, stating, that the next steps will be to understand what they are doing in the brain and how the body responds to them.

Continue Reading

Trending